School of Clinical Dentistry, University of Sheffield, Sheffield, UK.
National Centre for Molecular Hydrodynamics, and, Soft Matter Biomaterials and Bio-Interfaces, University of Nottingham, The Limes Building, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
Sci Rep. 2021 Jul 1;11(1):13697. doi: 10.1038/s41598-021-93172-1.
Microbial keratitis occurs from the infection of the cornea by fungi and or bacteria. It remains one of the most common global causes of irreversible blindness accounting for 3.5% (36 million) of blind people as of 2015. This paper looks at the use of a bacteria binding polymer designed to bind Staphylococcus aureus and remove it from the corneal surface. Mechanical unbinding measurements were used to probe the interactions of a thermo-active bacteria-binding polymer, highly-branched poly(N-isopropyl acrylamide), functionalised with modified vancomycin end groups (HB-PNIPAM-Van) to bacteria placed on rabbit corneal surfaces studied ex-vivo. This was conducted during sequential temperature phase transitions of HB-PNIPAM-Van-S. aureus below, above and below the lower critical solution temperature (LCST) in 3 stages, in-vitro, using a novel micro-bead force spectroscopy (MBFS) approach via atomic force microscopy (AFM). The effect of temperature on the functionality of HB-PNIPAM-Van-S. aureus showed that the polymer-bacteria complex reduced the work done in removing bacterial aggregates at T > LCST (p < 0.05), exhibiting reversibility at T < LCST (p < 0.05). At T < LCST, the breaking force, number of unbinding events, percentage fitted segments in the short and long range, and the percentage of unbinding events occurring in the long range (> 2.5 µm) increased (p < 0.05). Furthermore, the LCST phase transition temperature showed 100 × more unbinding events in the long-range z-length (> 2.5 µm) compared to S. aureus aggregates only. Here, we present the first study using AFM to assess the reversible mechanical impact of a thermo-active polymer-binding bacteria on a natural corneal surface.
微生物角膜炎是由真菌和/或细菌感染角膜引起的。它仍然是全球最常见的导致不可逆性失明的原因之一,截至 2015 年,全球失明人数中 3.5%(3600 万人)由此导致。本文研究了一种旨在结合金黄色葡萄球菌并将其从角膜表面去除的细菌结合聚合物的应用。使用机械解缚测量来探测热活性细菌结合聚合物,高度支化的聚(N-异丙基丙烯酰胺),用修饰的万古霉素末端基团官能化(HB-PNIPAM-Van)与放置在兔角膜表面上的细菌之间的相互作用,这些细菌在体外低于、高于和低于下临界溶液温度(LCST)的三个阶段进行,使用通过原子力显微镜(AFM)进行的新型微珠力谱学(MBFS)方法进行。温度对 HB-PNIPAM-Van-S. aureus 功能的影响表明,聚合物-细菌复合物降低了在 T>LCST 时去除细菌聚集体所需的功(p<0.05),在 T<LCST 时表现出可逆性(p<0.05)。在 T<LCST 时,断裂力、解缚事件数、短程和长程拟合段的百分比以及长程(>2.5μm)中发生的解缚事件的百分比增加(p<0.05)。此外,LCST 相变温度在长程 z 长度(>2.5μm)中显示出比金黄色葡萄球菌聚集体多 100 倍的解缚事件。在这里,我们首次使用 AFM 评估了热活性聚合物结合细菌对天然角膜表面的可逆机械影响。