Department of Electronics, Computer Science and Systems, University of Bologna, Bologna, Italy.
Neuropsychologia. 2010 Feb;48(3):812-30. doi: 10.1016/j.neuropsychologia.2009.09.037. Epub 2009 Oct 14.
Visual peripersonal space (i.e., the space immediately surrounding the body) is represented by multimodal neurons integrating tactile stimuli applied on a body part with visual stimuli delivered near the same body part, e.g., the hand. Tool use may modify the boundaries of the peri-hand area, where vision and touch are integrated. The neural mechanisms underlying such plasticity have not been yet identified. To this aim, neural network modelling may be integrated with experimental research. In the present work, we pursued two main objectives: (i) using an artificial neural network to postulate some physiological mechanisms for peri-hand space plasticity in order to account for in-vivo data; (ii) validating model predictions with an ad-hoc behavioural experiment on an extinction patient. The model assumes that the modification of peri-hand space arises from a Hebbian growing of visual synapses converging into the multimodal area, which extends the visual receptive field (RF) of the peripersonal bimodal neurons. Under this hypothesis, the model is able to interpret and explain controversial results in the current literature, showing how different tool-use tasks during the learning phase result in different re-sizing effects of the peri-hand space. Importantly, the model also implies that, after tool-use, a far visual stimulus acts as a near one, independently of whether the tool is present or absent in the subject's hand. This prediction has been validated by an in-vivo experiment on a right brain-damaged patient suffering from visual-tactile extinction. This study demonstrates how neural network modelling may integrate with experimental studies, by generating new predictions and suggesting novel experiments to investigate cognitive processes.
视觉近体空间(即身体周围的空间)由多模态神经元表示,这些神经元将施加在身体部位上的触觉刺激与施加在同一身体部位附近的视觉刺激整合在一起,例如手。工具的使用可能会改变近手区域的边界,在这个区域中,视觉和触觉会被整合。但是,这种可塑性的神经机制尚未确定。为了实现这一目标,可以将神经网络建模与实验研究相结合。在本工作中,我们追求两个主要目标:(i)使用人工神经网络来假设一些近体空间可塑性的生理机制,以解释体内数据;(ii)通过对一名失认症患者进行专门的行为实验来验证模型的预测。该模型假设,近手空间的改变是由于视觉突触的赫布式生长所致,这些视觉突触汇聚到多模态区域,从而扩展了近体双模态神经元的视觉感受野(RF)。根据这个假设,该模型能够解释和解释当前文献中的有争议的结果,展示了在学习阶段进行不同的工具使用任务如何导致近手空间的不同重新调整效果。重要的是,该模型还意味着,在使用工具后,一个远距离的视觉刺激会像近距离的刺激一样作用,而与工具是否存在于受试者的手中无关。这项预测已经通过对一名患有视觉触觉失认症的右脑损伤患者的体内实验得到了验证。这项研究表明,神经网络建模如何通过生成新的预测并提出新的实验来研究认知过程,与实验研究相结合。