Suppr超能文献

整合分子分析提示低级别胶质瘤的三分类模型:概念验证研究。

Integrated molecular analysis suggests a three-class model for low-grade gliomas: a proof-of-concept study.

机构信息

Department of Neurosurgery, The Cleveland Clinic, Cleveland, OH, USA.

出版信息

Genomics. 2010 Jan;95(1):16-24. doi: 10.1016/j.ygeno.2009.09.007. Epub 2009 Oct 14.

Abstract

INTRODUCTION

We used an integrated molecular analysis strategy to perform class discovery on a population of low-grade gliomas (astrocytomas, oligodendrogliomas, and mixed gliomas) to improve our understanding of the molecular relationships among these tumors and to reconcile genotypic relationships with current histologic and molecular strategies for tumor classification.

METHODS

Gene expression profiling was performed on a cross-section of World Health Organization (WHO) grades I-II gliomas. Unsupervised class discovery algorithms identified and validated tumor clusters with genotypic similarity, and these data were integrated with chromosomal copy number assays and RT-PCR data to define molecular tumor subclasses. Machine learning models allowed accurate, prospective classification of unknown tumors into these molecular subgroups. This molecular classification model was compared to current histologic (WHO) and molecular pathologic (chromosome 1p and 19q deletions, p53 alterations, and Ki-67 expression) methods for glioma classification.

RESULTS

Molecular class discovery suggested a three-class model for low-grade gliomas. One discrete cluster of gliomas identified the pilocytic astrocytomas, a second grouped the 1p/19q codeleted oligodendrogliomas, and the mixture of remaining 1p/19q intact gliomas, including astrocytomas, oligodendrogliomas, and oligoastrocytomas, formed a third cluster with a discrete pattern of expression.

CONCLUSIONS

Integration of genomic, transcriptomic, and morphologic data for class discovery suggests a three-class model for low-grade gliomas. Class I represents tumors with molecular similarity to pilocytic astrocytomas, class II tumors are similar to 1p/19q codeleted oligodendrogliomas, and class III represents infiltrative low-grade gliomas. This classification is similar to current clinical paradigms for low-grade gliomas; our work suggests a molecular basis for such models. This classification may supplement or may serve as the basis for a molecular pathologic alternative to current grading schemes for low-grade gliomas and may highlight potential targets for future biologically based treatments or strategies for future clinical trials.

摘要

简介

我们使用综合分子分析策略对低级别胶质瘤(星形细胞瘤、少突胶质细胞瘤和混合性胶质瘤)进行分类发现,以增进我们对这些肿瘤之间分子关系的理解,并协调基因型关系与当前用于肿瘤分类的组织学和分子策略。

方法

对世界卫生组织(WHO)分级 I-II 级胶质瘤进行了基因表达谱分析。无监督分类发现算法确定并验证了具有基因型相似性的肿瘤聚类,这些数据与染色体拷贝数检测和 RT-PCR 数据相结合,定义了分子肿瘤亚类。机器学习模型允许将未知肿瘤准确地、前瞻性地分类到这些分子亚群中。该分子分类模型与当前的组织学(WHO)和分子病理学(染色体 1p 和 19q 缺失、p53 改变和 Ki-67 表达)方法用于胶质瘤分类进行了比较。

结果

分子分类发现提示低级别胶质瘤存在三分类模型。一个离散的胶质瘤簇确定为毛细胞星形细胞瘤,第二个聚类为 1p/19q 缺失的少突胶质细胞瘤,而剩余的 1p/19q 完整的胶质瘤,包括星形细胞瘤、少突胶质细胞瘤和少突星形细胞瘤,形成了具有离散表达模式的第三个聚类。

结论

基因组、转录组和形态学数据的整合用于分类发现提示低级别胶质瘤存在三分类模型。I 类代表与毛细胞星形细胞瘤具有分子相似性的肿瘤,II 类肿瘤与 1p/19q 缺失的少突胶质细胞瘤相似,III 类代表浸润性低级别胶质瘤。这种分类类似于当前低级别胶质瘤的临床范例;我们的工作为这种模型提供了分子基础。这种分类可能补充或作为当前低级别胶质瘤分级方案的分子病理学替代方案,并可能突出未来基于生物学的治疗或未来临床试验的潜在目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验