Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA.
Vet Parasitol. 2010 Feb 10;167(2-4):167-74. doi: 10.1016/j.vetpar.2009.09.018. Epub 2009 Sep 20.
The tick-borne pathogen, Anaplasma marginale, has a complex life cycle involving ruminants and ixodid ticks. It causes bovine anaplasmosis, a disease with significant economic impact on cattle farming worldwide. The obligate intracellular growth requirement of the bacteria poses a challenging obstacle to their genetic manipulation, a problem shared with other prokaryotes in the genera Anaplasma, Ehrlichia, and Rickettsia. Following our successful transformation of the human anaplasmosis agent, A. phagocytophilum, we produced plasmid constructs (a transposon bearing plasmid, pHimarAm-trTurboGFP-SS, and a transposase expression plasmid, pET28Am-trA7) designed to mediate random insertion of the TurboGFP and spectinomycin/streptomycin resistance genes by the Himar1 allele A7 into the A. marginale chromosome. In these trans constructs, expression of the fluorescent and the selectable markers on the transposon, and expression of the transposase are under control of the A. marginale tr promoter. Constructs were co-electroporated into A. marginale St. Maries purified from tick cell culture, and bacteria incubated for 2 months under selection with a combination of spectinomycin and streptomycin. At that time, < or =1% of tick cells contained colonies of brightly fluorescent Anaplasma, which eventually increased to infect about 80-90% of the cells. Cloning of the insertion site in E. coli and DNA sequence analyses demonstrated insertion of the entire plasmid pHimarAm-trTurboGFP-SS encoding the transposon in frame into the native tr region of A. marginale in an apparent single homologous crossover event not mediated by the transposase. Transformants are fastidious and require longer subculture intervals than wild type A. marginale. This result suggests that A. marginale, as well as possibly other species of Anaplasma and Ehrlichia, can be transformed using a strategy of homologous recombination.
蜱传病原体边缘无形体(Anaplasma marginale)具有复杂的生命周期,涉及反刍动物和硬蜱。它会引起牛无形体病,这是一种对全球养牛业具有重大经济影响的疾病。细菌的必需的胞内生长要求对其遗传操作构成了具有挑战性的障碍,这是与无形体属、埃立克体属和立克次体属的其他原核生物共同面临的问题。在成功转化人类无形体病病原体 A. phagocytophilum 后,我们构建了质粒构建体(携带转座子的质粒 pHimarAm-trTurboGFP-SS 和转座酶表达质粒 pET28Am-trA7),旨在通过 Himar1 等位基因 A7 介导随机插入 TurboGFP 和壮观霉素/链霉素抗性基因到 A. marginale 染色体中。在这些转座构建体中,转座子上荧光和选择标记的表达以及转座酶的表达受 A. marginale tr 启动子的控制。将构建体共电穿孔到从蜱细胞培养物中纯化的 A. marginale St. Maries 中,并用壮观霉素和链霉素的组合进行 2 个月的选择培养。此时,<或=1%的蜱细胞中含有明亮荧光无形体的菌落,最终感染了约 80-90%的细胞。在大肠杆菌中克隆插入位点并进行 DNA 序列分析表明,整个质粒 pHimarAm-trTurboGFP-SS 编码的转座子以框架形式插入 A. marginale 天然 tr 区,这是一个明显的非转座酶介导的单同源交叉事件。转化体很挑剔,需要比野生型 A. marginale 更长的亚培养间隔时间。这一结果表明,A. marginale 以及可能的其他无形体属和埃立克体属物种,可以通过同源重组策略进行转化。