Laboratoire de Structure et Propriétés de l'Etat Solide, CNRS 8008, Université de Lille 1, F-59655 Villeneuve d'Ascq Cedex, France.
J Synchrotron Radiat. 2009 Nov;16(Pt 6):748-56. doi: 10.1107/S0909049509034426. Epub 2009 Sep 25.
Dramatic technical progress seen over the past decade now allows the plastic properties of materials to be investigated under extreme pressure and temperature conditions. Coupling of high-pressure apparatuses with synchrotron radiation significantly improves the quantification of differential stress and specimen textures from X-ray diffraction data, as well as specimen strains and strain rates by radiography. This contribution briefly reviews the recent developments in the field and describes state-of-the-art extreme-pressure deformation devices and analytical techniques available today. The focus here is on apparatuses promoting deformation at pressures largely in excess of 3 GPa, namely the diamond anvil cell, the deformation-DIA apparatus and the rotational Drickamer apparatus, as well as on the methods used to carry out controlled deformation experiments while quantifying X-ray data in terms of materials rheological parameters. It is shown that these new techniques open the new field of in situ investigation of materials rheology at extreme conditions, which already finds multiple fundamental applications in the understanding of the dynamics of Earth-like planet interior.
过去十年中出现的戏剧性技术进步使得现在能够在极端压力和温度条件下研究材料的塑性特性。高压设备与同步加速器辐射的结合极大地提高了从 X 射线衍射数据中定量分析差应力和样品织构的能力,以及利用射线照相术定量分析样品应变和应变速率的能力。本贡献简要回顾了该领域的最新发展,并描述了当今可用的最先进的极端压力变形装置和分析技术。这里的重点是在压力大大超过 3GPa 的情况下促进变形的装置,即金刚石压砧、变形-DIA 装置和旋转 Drickamer 装置,以及用于在量化 X 射线数据以获得材料流变参数的同时进行受控变形实验的方法。结果表明,这些新技术开辟了在极端条件下原位研究材料流变学的新领域,该领域在理解类地行星内部动力学方面已经有了多种基础应用。