Suppr超能文献

处理患者水平数据经济评估中的不确定性:使用贝叶斯方法为卫生技术评估提供信息的综述。

Handling uncertainty in economic evaluations of patient level data: a review of the use of Bayesian methods to inform health technology assessments.

机构信息

Department of Clinical Epidemiology & Biostatistics, McMaster University, Programs for Assessment of Technology in Health (PATH) Research Institute, Ontario, Canada.

出版信息

Int J Technol Assess Health Care. 2009 Oct;25(4):546-54. doi: 10.1017/S0266462309990316.

Abstract

OBJECTIVES

Due to potential advantages (e.g., using all available evidence), Bayesian methods have been proposed to assist healthcare decision making. This review provides a detailed description of how Bayesian methods have been applied to economic evaluations of patient level data. The results serve both as a reference and as a means by which to examine the appropriate application of Bayesian methods to inform decision making.

METHODS

MEDLINE, EMBASE, and Cochrane Economic Evaluation databases were searched to identify studies, published up to November 2007, meeting three inclusion criteria: (i) the study conducted an economic evaluation, (ii) sampling uncertainty was incorporated using Bayesian methods, (iii) the likelihood function was informed by patient level data from a single source. Data were collected on key study characteristics (e.g., prior distribution, likelihood function, presentation of uncertainty).

RESULTS

The search identified 366 potentially relevant studies, from which 103 studies underwent full-text review. Sixteen studies met the inclusion criteria. Half of the studies used uninformative priors; most studies incorporated the potential dependence between costs and effects, and presented cost-effectiveness acceptability curves. Results were sensitive to changes in the priors and likelihoods.

CONCLUSIONS

Limited use of informative priors, among the included studies, gives policy makers little guidance on one of the main benefits of Bayesian methods, the ability to integrate all available evidence to capture the uncertainty inherent in decision making.

摘要

目的

由于潜在的优势(例如,使用所有可用的证据),贝叶斯方法已被提出以协助医疗保健决策。本综述详细描述了贝叶斯方法如何应用于患者水平数据的经济评估。这些结果既是参考,也是检验贝叶斯方法在为决策提供信息方面的适当应用的手段。

方法

检索 MEDLINE、EMBASE 和 Cochrane 经济评价数据库,以确定符合以下三项纳入标准的研究:(i)进行经济评价的研究,(ii)使用贝叶斯方法纳入抽样不确定性,(iii)似然函数由来自单一来源的患者水平数据提供。收集了关键研究特征的数据(例如,先验分布、似然函数、不确定性的表示)。

结果

搜索确定了 366 项潜在相关研究,其中 103 项进行了全文审查。符合纳入标准的研究有 16 项。半数研究使用了无信息先验;大多数研究纳入了成本和效果之间的潜在依赖性,并呈现了成本效果可接受性曲线。结果对先验和似然的变化敏感。

结论

在所纳入的研究中,对信息丰富的先验的使用有限,这使得决策者对贝叶斯方法的主要优势之一(即整合所有可用证据以捕捉决策中固有的不确定性的能力)几乎没有指导意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验