Suppr超能文献

一种用于将概率解压模型拟合到经验数据的计算优势系统。

A computationally advantageous system for fitting probabilistic decompression models to empirical data.

机构信息

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300, USA.

出版信息

Comput Biol Med. 2009 Dec;39(12):1117-29. doi: 10.1016/j.compbiomed.2009.09.006. Epub 2009 Oct 23.

Abstract

To investigate the nature and mechanisms of decompression sickness (DCS), we developed a system for evaluating the success of decompression models in predicting DCS probability from empirical data. Model parameters were estimated using maximum likelihood techniques. Exact integrals of risk functions and tissue kinetics transition times were derived. Agreement with previously published results was excellent including: (a) maximum likelihood values within one log-likelihood unit of previous results and improvements by re-optimization; (b) mean predicted DCS incidents within 1.4% of observed DCS; and (c) time of DCS occurrence prediction. Alternative optimization and homogeneous parallel processing techniques yielded faster model optimization times.

摘要

为了研究减压病 (DCS) 的性质和机制,我们开发了一个系统,用于从经验数据评估减压模型预测 DCS 概率的成功程度。使用最大似然技术估计模型参数。得出了风险函数和组织动力学跃迁时间的精确积分。与之前发表的结果非常吻合,包括:(a) 最大似然值与之前结果相差一个对数似然单位,通过重新优化得到改进;(b) 预测的 DCS 事件平均值与观察到的 DCS 相差 1.4%;和 (c) DCS 发生时间预测。替代优化和同质并行处理技术产生了更快的模型优化时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验