Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 4810-1001, USA.
J Magn Reson. 2010 Jan;202(1):117-21. doi: 10.1016/j.jmr.2009.09.022. Epub 2009 Sep 30.
The application of residual dipolar couplings (RDCs) in studies of RNA structure and dynamics can be complicated by the presence of couplings between collective helix motions and overall alignment and by the inability to modulate overall alignment of the molecule by changing the ordering medium. Here, we show for a 27-nt TAR RNA construct that variable levels of helix elongation can be used to alter both overall alignment and couplings to collective helix motions in a semi-predictable manner. In the absence of elongation, a four base-pair helix II capped by a UUCG apical loop exhibits a higher degree of order compared to a six base-pair helix I (theta(I)/theta(II)=0.56+/-0.1). The principal S(zz) direction is nearly parallel to the axis of helix II but deviates by approximately 40 degrees relative to the axis of helix I. Elongating helix I by three base-pairs equalizes the alignment of the two helices and pushes the RNA into the motional coupling limit such that the two helices have comparable degrees of order (theta(I)/theta(II)=0.92+/-0.04) and orientations relative to S(zz) ( approximately 17 degrees ). Increasing the length of elongation further to 22 base-pairs pushes the RNA into the motional decoupling limit in which helix I dominates alignment (theta(II)/theta(I)=0.45+/-0.05), with S(zz) orientated nearly parallel to its helix axis. Many of these trends can be rationalized using PALES simulations that employ a previously proposed three-state dynamic ensemble of TAR. Our results provide new insights into motional couplings, offer guidelines for assessing their extent, and suggest that variable degrees of helix elongation can allow access to independent sets of RDCs for characterizing RNA structural dynamics.
残剩偶极耦合(RDC)在 RNA 结构和动力学研究中的应用可能会受到以下因素的影响:集体螺旋运动与整体排列之间的耦合,以及通过改变有序介质来改变分子整体排列的能力。在这里,我们展示了一个 27 个核苷酸的 TAR RNA 结构,它可以通过可变的螺旋伸长程度,以半可预测的方式改变整体排列和与集体螺旋运动的耦合。在没有伸长的情况下,由 UUCG 顶端环帽定的四碱基螺旋 II 比六碱基螺旋 I 具有更高的有序度(theta(I)/theta(II)=0.56+/-0.1)。主 S(zz)方向几乎与螺旋 II 的轴平行,但相对于螺旋 I 的轴偏差约 40 度。将螺旋 I 伸长三个碱基对可使两个螺旋的排列相等,并将 RNA 推向运动耦合极限,使得两个螺旋具有可比的有序度(theta(I)/theta(II)=0.92+/-0.04)和相对于 S(zz)的取向(约 17 度)。进一步将伸长长度增加到 22 个碱基对,会将 RNA 推向运动解耦极限,其中螺旋 I 主导排列(theta(II)/theta(I)=0.45+/-0.05),S(zz)几乎与它的螺旋轴平行取向。许多这些趋势可以用 PALES 模拟来合理化,这些模拟采用了先前提出的 TAR 的三态动态集合。我们的结果为运动耦合提供了新的见解,为评估其程度提供了指导,并表明可变程度的螺旋伸长可以使我们能够获得独立的 RDC 集,以用于表征 RNA 结构动力学。