Suppr超能文献

Localization of DNA sequences to a region within Xp11.21 between incontinentia pigmenti (IP1) X-chromosomal translocation breakpoints.

作者信息

Gorski J L, Burright E N, Harnden C E, Stein C K, Glover T W, Reyner E L

机构信息

Department of Pediatrics, School of Medicine, University of Michigan, Ann Arbor.

出版信息

Am J Hum Genet. 1991 Jan;48(1):53-64.

Abstract

Incontinentia pigmenti (IP) is an X-linked dominant disorder characterized by developmental anomalies of the tissues and organs derived from embryonic ectoderm and neuroectoderm. An IP locus, designated IP1, probably resides in Xp11.21, since five unrelated patients with nonfamilial IP have been identified who possess constitutional de novo reciprocal X;autosome translocations involving Xp11.21. We have used a series of somatic cell hybrids containing the rearranged chromosomes derived from three of the five IP1 patients, along with other hybrid cell lines, to map probes in the vicinity of the IP1 locus. Five anonymous DNA loci--DXS422, DXS14, DXS343, DXS429, and DXS370--have been mapped to a region within Xp11.21, between two IP1 X-chromosomal translocation breakpoints; the IP1 t(X;17) breakpoint is proximal (centromeric) to this region, and the IP1 t(X;13) and t(X;9) X-chromosomal breakpoints lie distal to it. While no IP1 translocation breakpoint has yet been identified by pulsed-field gel electrophoretic (PFGE) analysis, an overlap between three probes--p58-1, 7PSH3.5, and cpX210--has been detected, placing these probes within 125 kb. Four probes--p58-1, 7PSH3.5, cpX210, and 30CE2.8--have been helpful in constructing a 1,250-kb PFGE map of the region between the breakpoints; these results suggest that the IP1 X-chromosomal translocation breakpoints are separated by at least this distance. The combined somatic cell hybrid and PFGE analyses we report here favor the probe order DXS323-(IP1 t(X;13), IP1, t(X;9]-(DXS422, DXS14, DXS343, DXS429, DXS370)-(IP1 t(X;17), DXZ1). These sequences provide a starting point for identifying overlapping genomic sequences that span the IP1 translocation breakpoints; the availability of IP1 translocation breakpoints should now assist the cloning of this locus.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/1682742/81d37e355595/ajhg00085-0060-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验