Suppr超能文献

人近端 Xp 区的 FoSTeS、MMBIR 和 NAHR 以及人类 Xq 等臂染色体形成的机制。

FoSTeS, MMBIR and NAHR at the human proximal Xp region and the mechanisms of human Xq isochromosome formation.

机构信息

Department of Medical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.

出版信息

Hum Mol Genet. 2011 May 15;20(10):1925-36. doi: 10.1093/hmg/ddr074. Epub 2011 Feb 24.

Abstract

The recently described DNA replication-based mechanisms of fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR) were previously shown to catalyze complex exonic, genic and genomic rearrangements. By analyzing a large number of isochromosomes of the long arm of chromosome X (i(Xq)), using whole-genome tiling path array comparative genomic hybridization (aCGH), ultra-high resolution targeted aCGH and sequencing, we provide evidence that the FoSTeS and MMBIR mechanisms can generate large-scale gross chromosomal rearrangements leading to the deletion and duplication of entire chromosome arms, thus suggesting an important role for DNA replication-based mechanisms in both the development of genomic disorders and cancer. Furthermore, we elucidate the mechanisms of dicentric i(Xq) (idic(Xq)) formation and show that most idic(Xq) chromosomes result from non-allelic homologous recombination between palindromic low copy repeats and highly homologous palindromic LINE elements. We also show that non-recurrent-breakpoint idic(Xq) chromosomes have microhomology-associated breakpoint junctions and are likely catalyzed by microhomology-mediated replication-dependent recombination mechanisms such as FoSTeS and MMBIR. Finally, we stress the role of the proximal Xp region as a chromosomal rearrangement hotspot.

摘要

最近描述的基于 DNA 复制的叉停顿和模板转换(FoSTeS)和微同源介导的断裂诱导复制(MMBIR)机制先前被证明可以催化复杂的外显子、基因和基因组重排。通过使用全基因组平铺路径阵列比较基因组杂交(aCGH)、超高分辨率靶向 aCGH 和测序分析大量 X 染色体长臂等臂染色体(i(Xq)),我们提供了证据表明 FoSTeS 和 MMBIR 机制可以产生大规模的染色体结构重排,导致整个染色体臂的缺失和重复,从而表明 DNA 复制机制在基因组疾病和癌症的发展中起着重要作用。此外,我们阐明了双着丝粒 i(Xq)(idic(Xq))形成的机制,并表明大多数 idic(Xq) 染色体是由回文低拷贝重复序列和高度同源回文 LINE 元件之间的非等位基因同源重组产生的。我们还表明,非重现性断裂点 idic(Xq) 染色体具有微同源相关的断裂点连接,并且可能由 FoSTeS 和 MMBIR 等微同源介导的复制依赖性重组机制催化。最后,我们强调了近端 Xp 区域作为染色体重排热点的作用。

相似文献

4
Mechanisms of structural chromosomal rearrangement formation.结构性染色体重排形成的机制。
Mol Cytogenet. 2022 Jun 14;15(1):23. doi: 10.1186/s13039-022-00600-6.
6
Decoding NF1 Intragenic Copy-Number Variations.解读神经纤维瘤病1型基因内拷贝数变异
Am J Hum Genet. 2015 Aug 6;97(2):238-49. doi: 10.1016/j.ajhg.2015.06.002. Epub 2015 Jul 16.

引用本文的文献

1
Chromoanasynthesis.染色体组分析
Methods Mol Biol. 2025;2968:35-51. doi: 10.1007/978-1-0716-4750-9_2.
3
SETD2 safeguards the genome against isochromosome formation.SETD2 可保护基因组免受等臂染色体形成的影响。
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2303752120. doi: 10.1073/pnas.2303752120. Epub 2023 Sep 18.

本文引用的文献

2
Genomic rearrangements in inherited disease and cancer.遗传性疾病和癌症中的基因组重排。
Semin Cancer Biol. 2010 Aug;20(4):222-33. doi: 10.1016/j.semcancer.2010.05.007. Epub 2010 Jun 9.
5
Widespread gene conversion in centromere cores.着丝粒核心内广泛的基因转换。
PLoS Biol. 2010 Mar 9;8(3):e1000327. doi: 10.1371/journal.pbio.1000327.
6
Centromeres convert but don't cross.着丝粒转换但不交叉。
PLoS Biol. 2010 Mar 9;8(3):e1000326. doi: 10.1371/journal.pbio.1000326.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验