Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Unité Propre de Recherche2355, Protein Maturation, Cell Fate, and Therapeutics, F-91198 Gif-sur-Yvette cedex, France.
Plant Cell. 2009 Oct;21(10):3296-314. doi: 10.1105/tpc.109.069757. Epub 2009 Oct 23.
The earliest proteolytic event affecting most proteins is the excision of the initiating Met (NME). This is an essential and ubiquitous cotranslational process tightly regulated in all eukaryotes. Currently, the effects of NME on unknown complex cellular networks and the ways in which its inhibition leads to developmental defects and cell growth arrest remain poorly understood. Here, we provide insight into the earliest molecular mechanisms associated with the inhibition of the NME process in Arabidopsis thaliana. We demonstrate that the developmental defects induced by NME inhibition are caused by an increase in cellular proteolytic activity, primarily induced by an increase in the number of proteins targeted for rapid degradation. This deregulation drives, through the increase of the free amino acids pool, a perturbation of the glutathione homeostasis, which corresponds to the earliest limiting, reversible step promoting the phenotype. We demonstrate that these effects are universally conserved and that the reestablishment of the appropriate glutathione status restores growth and proper development in various organisms. Finally, we describe a novel integrated model in which NME, protein N-alpha-acylation, proteolysis, and glutathione homeostasis operate in a sequentially regulated mechanism that directs both growth and development.
最早影响大多数蛋白质的蛋白水解事件是起始甲硫氨酸(NME)的切除。这是一个在所有真核生物中都紧密调节的基本和普遍的共翻译过程。目前,NME 对未知的复杂细胞网络的影响以及其抑制导致发育缺陷和细胞生长停滞的方式仍知之甚少。在这里,我们深入了解与拟南芥中 NME 过程抑制相关的最早分子机制。我们证明,NME 抑制诱导的发育缺陷是由细胞蛋白水解活性的增加引起的,主要是由于靶向快速降解的蛋白质数量增加所致。这种失调通过游离氨基酸池的增加,破坏了谷胱甘肽的动态平衡,这是促进表型的最早的限制、可逆步骤。我们证明这些效应是普遍保守的,并且适当的谷胱甘肽状态的恢复在各种生物体中恢复了生长和正常发育。最后,我们描述了一个新的综合模型,其中 NME、蛋白质 N-α-酰化、蛋白水解和谷胱甘肽动态平衡在一个顺序调节的机制中协同作用,该机制指导生长和发育。