Suppr超能文献

利什曼原虫和锥虫的主要表面蛋白酶:一种尺寸适合所有?

Major surface protease of trypanosomatids: one size fits all?

机构信息

Mailing address: Department of Veterinary Sciences and Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, WY 82070, USA.

出版信息

Infect Immun. 2010 Jan;78(1):22-31. doi: 10.1128/IAI.00776-09. Epub 2009 Oct 26.

Abstract

Major surface protease (MSP or GP63) is the most abundant glycoprotein localized to the plasma membrane of Leishmania promastigotes. MSP plays several important roles in the pathogenesis of leishmaniasis, including but not limited to (i) evasion of complement-mediated lysis, (ii) facilitation of macrophage (Mø) phagocytosis of promastigotes, (iii) interaction with the extracellular matrix, (iv) inhibition of natural killer cellular functions, (v) resistance to antimicrobial peptide killing, (vi) degradation of Mø and fibroblast cytosolic proteins, and (vii) promotion of survival of intracellular amastigotes. MSP homologues have been found in all other trypanosomatids studied to date including heteroxenous members of Trypanosoma cruzi, the extracellular Trypanosoma brucei, unusual intraerythrocytic Endotrypanum spp., phytoparasitic Phytomonas spp., and numerous monoxenous species. These proteins are likely to perform roles different from those described for Leishmania spp. Multiple MSPs in individual cells may play distinct roles at some time points in trypanosomatid life cycles and collaborative or redundant roles at others. The cellular locations and the extracellular release of MSPs are also discussed in connection with MSP functions in leishmanial promastigotes.

摘要

主要表面蛋白酶(MSP 或 GP63)是定位在利什曼原虫前鞭毛体质膜上最丰富的糖蛋白。MSP 在利什曼病的发病机制中发挥了几个重要作用,包括但不限于:(i)逃避补体介导的裂解,(ii)促进巨噬细胞(Mø)吞噬前鞭毛体,(iii)与细胞外基质相互作用,(iv)抑制自然杀伤细胞功能,(v)抵抗抗菌肽的杀伤,(vi)降解 Mø 和成纤维细胞胞质蛋白,以及(vii)促进细胞内无鞭毛体的存活。迄今为止,在所有已研究的原生动物中都发现了 MSP 同源物,包括异生的克氏锥虫、细胞外的布氏锥虫、不同寻常的内红细胞内锥虫、植物寄生的根肿菌属以及许多单生物种。这些蛋白质可能发挥着与利什曼原虫不同的作用。在个体细胞中的多个 MSP 可能在原生动物生命周期的某些时间点发挥不同的作用,而在其他时间点则发挥协作或冗余作用。还讨论了 MSP 在细胞内的位置和细胞外释放与利什曼原虫前鞭毛体 MSP 功能的关系。

相似文献

1
Major surface protease of trypanosomatids: one size fits all?
Infect Immun. 2010 Jan;78(1):22-31. doi: 10.1128/IAI.00776-09. Epub 2009 Oct 26.
4
The major surface protease (MSP or GP63) in the intracellular amastigote stage of Leishmania chagasi.
Mol Biochem Parasitol. 2008 Feb;157(2):148-59. doi: 10.1016/j.molbiopara.2007.10.008. Epub 2007 Oct 30.
6
Interactions of antimicrobial peptides with Leishmania and trypanosomes and their functional role in host parasitism.
Exp Parasitol. 2010 Nov;126(3):397-405. doi: 10.1016/j.exppara.2010.02.006. Epub 2010 Feb 14.
7
Multiple products of the Leishmania chagasi major surface protease (MSP or GP63) gene family.
Mol Biochem Parasitol. 2004 Jun;135(2):171-83. doi: 10.1016/j.molbiopara.2004.03.010.
8
Phytomonas serpens: immunological similarities with the human trypanosomatid pathogens.
Microbes Infect. 2007 Jul;9(8):915-21. doi: 10.1016/j.micinf.2007.03.018. Epub 2007 Apr 12.
9
Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids.
Parasitology. 2021 Sep;148(10):1161-1170. doi: 10.1017/S0031182020002425. Epub 2021 Jan 7.
10
A gene encoding the plant-like alternative oxidase is present in Phytomonas but absent in Leishmania spp.
J Eukaryot Microbiol. 1998 Jul-Aug;45(4):426-30. doi: 10.1111/j.1550-7408.1998.tb05094.x.

引用本文的文献

1
Exploring the genomic landscape of the GP63 family in Trypanosoma cruzi: Evolutionary dynamics and functional peculiarities.
PLoS Negl Trop Dis. 2025 Mar 17;19(3):e0012950. doi: 10.1371/journal.pntd.0012950. eCollection 2025 Mar.
3
Differential expression of peptidases in Strigomonas culicis wild-type and aposymbiotic strains: from proteomic data to proteolytic activity.
Mem Inst Oswaldo Cruz. 2024 Dec 9;119:e240110. doi: 10.1590/0074-02760240110. eCollection 2024.
6
Genetic variation and microbiota in bumble bees cross-infected by different strains of C. bombi.
PLoS One. 2022 Nov 28;17(11):e0277041. doi: 10.1371/journal.pone.0277041. eCollection 2022.
7
Promastigote-to-Amastigote Conversion in spp.-A Molecular View.
Pathogens. 2022 Sep 15;11(9):1052. doi: 10.3390/pathogens11091052.
8
Quantum Biochemistry Screening and In Vitro Evaluation of Metalloproteinase Inhibitors.
Int J Mol Sci. 2022 Aug 2;23(15):8553. doi: 10.3390/ijms23158553.
9
Differences in Charge Distribution in Leishmanolysin Result in a Reduced Enzymatic Activity.
Int J Mol Sci. 2022 Jul 11;23(14):7660. doi: 10.3390/ijms23147660.
10
The genomic basis of host and vector specificity in non-pathogenic trypanosomatids.
Biol Open. 2022 Apr 15;11(4). doi: 10.1242/bio.059237. Epub 2022 May 3.

本文引用的文献

4
The scavenger receptor MARCO is involved in Leishmania major infection by CBA/J macrophages.
Parasite Immunol. 2009 Apr;31(4):188-98. doi: 10.1111/j.1365-3024.2009.01093.x.
6
Killing of trypanosomatid parasites by a modified bovine host defense peptide, BMAP-18.
PLoS Negl Trop Dis. 2009;3(2):e373. doi: 10.1371/journal.pntd.0000373. Epub 2009 Feb 3.
8
Differential influence of gp63-like molecules in three distinct Leptomonas species on the adhesion to insect cells.
Parasitol Res. 2009 Jan;104(2):347-53. doi: 10.1007/s00436-008-1202-2. Epub 2008 Oct 1.
9
Leishmania surface protein gp63 binds directly to human natural killer cells and inhibits proliferation.
Clin Exp Immunol. 2008 Aug;153(2):221-30. doi: 10.1111/j.1365-2249.2008.03687.x.
10
Fibronectin binding and proteolytic degradation by Leishmania and effects on macrophage activation.
Infect Immun. 2008 Apr;76(4):1738-47. doi: 10.1128/IAI.01274-07. Epub 2008 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验