Technische Universität Dortmund, Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Str. 6, 44227 Dortmund, Germany.
Chemphyschem. 2009 Dec 21;10(18):3239-48. doi: 10.1002/cphc.200900477.
Correct and efficient self-assembly of oligonucleotides into highly ordered superstructures essentially depends on the structural integrity and thermal stability of DNA motifs such as junctions or tiles that build up the superstructure. To investigate the assembly/disassembly process of DNA tiles, we recently described a microplate-based method employing Förster resonance energy transfer (FRET) spectroscopy, which enables the analysis of DNA superstructure formation in real time and with high throughput. This method allows thermodynamic parameters of the self-assembly process to be extracted, and we here apply it for detailed analysis of the self-assembly of five different 4x4 DNA tile motifs. To specifically investigate whether the FRET probes tethered to the DNA motifs report local thermodynamic stabilities in the immediate proximity of the chromophores, or whether the global stability of the entire motif is monitored, systematic variations of the labeling position within one tile are carried out. Combined with gel electrophoretic, UV spectroscopic, and microcalorimetric analysis, this study reveals that the FRET method mainly reports the thermodynamics of local microenvironment assembly, rather than that of the entire motif. Nonetheless, the thermodynamic data derived from FRET analysis are also influenced by the structural surroundings of the motif, and thus rapid and detailed analysis and identification of potential "weak points" within a superstructure which influence the structural integrity of a given tile design are enabled. Therefore, the microplate FRET method readily provides insights into the assembly process of complex DNA superstructures to verify and complement theoretical design approaches.
正确有效地将寡核苷酸组装成高度有序的超结构主要取决于构建超结构的 DNA 基序(如连接子或瓦片)的结构完整性和热稳定性。为了研究 DNA 瓦片的组装/拆卸过程,我们最近描述了一种基于微孔板的方法,该方法采用Förster 共振能量转移(FRET)光谱法,可以实时和高通量地分析 DNA 超结构的形成。该方法可以提取自组装过程的热力学参数,我们在这里应用该方法对五个不同的 4x4 DNA 瓦片基序的自组装进行详细分析。为了专门研究连接到 DNA 基序的 FRET 探针是否报告了发色团附近的局部热力学稳定性,或者是否监测了整个基序的全局稳定性,在一个基序内进行了标记位置的系统变化。结合凝胶电泳、紫外光谱和微量热法分析,本研究表明 FRET 方法主要报告局部微环境组装的热力学,而不是整个基序的热力学。尽管如此,FRET 分析得出的热力学数据也受到基序结构环境的影响,因此可以快速详细地分析和识别超结构内影响给定瓦片设计结构完整性的潜在“弱点”。因此,微孔板 FRET 方法可以深入了解复杂 DNA 超结构的组装过程,从而验证和补充理论设计方法。