Zentrum für Medizinische Biotechnologi (ZMB), University of Duisburg-Essen, 45141 Essen, Germany.
Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.
Molecules. 2020 Nov 24;25(23):5466. doi: 10.3390/molecules25235466.
Since the pioneering work of Ned Seeman in the early 1980s, the use of the DNA molecule as a construction material experienced a rapid growth and led to the establishment of a new field of science, nowadays called structural DNA nanotechnology. Here, the self-recognition properties of DNA are employed to build micrometer-large molecular objects with nanometer-sized features, thus bridging the nano- to the microscopic world in a programmable fashion. Distinct design strategies and experimental procedures have been developed over the years, enabling the realization of extremely sophisticated structures with a level of control that approaches that of natural macromolecular assemblies. Nevertheless, our understanding of the building process, i.e., what defines the route that goes from the initial mixture of DNA strands to the final intertwined superstructure, is, in some cases, still limited. In this review, we describe the main structural and energetic features of DNA nanoconstructs, from the simple Holliday junction to more complicated DNA architectures, and present the theoretical frameworks that have been formulated until now to explain their self-assembly. Deeper insights into the underlying principles of DNA self-assembly may certainly help us to overcome current experimental challenges and foster the development of original strategies inspired to dissipative and evolutive assembly processes occurring in nature.
自 20 世纪 80 年代初内德·西曼(Ned Seeman)开创性工作以来,DNA 分子作为建筑材料的使用经历了快速发展,并催生了一个新的科学领域,即现在所称的结构 DNA 纳米技术。在这里,DNA 的自我识别特性被用来构建具有纳米级特征的微米级大分子物体,从而以可编程的方式在纳米到微观世界之间架起桥梁。多年来,已经开发出了不同的设计策略和实验程序,使得能够实现极其复杂的结构,其控制水平接近天然大分子组装的水平。然而,我们对构建过程的理解,即是什么定义了从初始 DNA 链混合物到最终交织超结构的路径,在某些情况下仍然有限。在这篇综述中,我们描述了 DNA 纳米结构的主要结构和能量特征,从简单的霍利迪交叉到更复杂的 DNA 结构,并介绍了迄今为止为解释其自组装而制定的理论框架。对 DNA 自组装基本原理的更深入了解肯定有助于我们克服当前的实验挑战,并促进受自然中耗散和进化组装过程启发的原始策略的发展。