Suppr超能文献

溶组织内阿米巴天冬氨酰 - tRNA合成酶的晶体结构。

Crystal structure of the aspartyl-tRNA synthetase from Entamoeba histolytica.

作者信息

Merritt Ethan A, Arakaki Tracy L, Larson Eric T, Kelley Angela, Mueller Natascha, Napuli Alberto J, Zhang Li, Deditta George, Luft Joseph, Verlinde Christophe L M J, Fan Erkang, Zucker Frank, Buckner Frederick S, Van Voorhis Wesley C, Hol Wim G J

机构信息

Department of Biochemistry, University of Washington, Mailstop 357742, Seattle, WA 98195, USA.

出版信息

Mol Biochem Parasitol. 2010 Feb;169(2):95-100. doi: 10.1016/j.molbiopara.2009.10.005. Epub 2009 Oct 27.

Abstract

The crystal structure of the aspartyl-tRNA synthetase from the eukaryotic parasite Entamoeba histolytica has been determined at 2.8Aresolution. Relative to homologous sequences, the E. histolytica protein contains a 43-residue insertion between the N-terminal anticodon binding domain and the C-terminal catalytic domain. The present structure reveals that this insertion extends an arm of the hinge region that has previously been shown to mediate interaction of aspartyl-tRNA synthetase with the cognate tRNA D-stem. Modeling indicates that this Entamoeba-specific insertion is likely to increase the interaction surface with the cognate tRNA(Asp). In doing so it may substitute functionally for an RNA-binding motif located in N-terminal extensions found in AspRS sequences from lower eukaryotes but absent in Entamoeba. The E. histolytica AspRS structure shows a well-ordered N-terminus that contributes to the AspRS dimer interface.

摘要

已在2.8埃分辨率下确定了真核寄生虫溶组织内阿米巴天冬氨酰 - tRNA合成酶的晶体结构。相对于同源序列,溶组织内阿米巴蛋白在N端反密码子结合结构域和C端催化结构域之间含有一个43个残基的插入序列。目前的结构表明,该插入序列延伸了铰链区的一个臂,此前已证明该臂介导天冬氨酰 - tRNA合成酶与同源tRNA D - 茎的相互作用。模型显示,这种内阿米巴特异性插入可能会增加与同源tRNA(Asp)的相互作用表面。这样做可能在功能上替代位于低等真核生物天冬氨酰 - tRNA合成酶(AspRS)序列N端延伸区但在溶组织内阿米巴序列中不存在的RNA结合基序。溶组织内阿米巴AspRS结构显示出一个有序的N端,它有助于AspRS二聚体界面的形成。

相似文献

1
Crystal structure of the aspartyl-tRNA synthetase from Entamoeba histolytica.
Mol Biochem Parasitol. 2010 Feb;169(2):95-100. doi: 10.1016/j.molbiopara.2009.10.005. Epub 2009 Oct 27.
2
Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori.
Acta Crystallogr F Struct Biol Commun. 2017 Feb 1;73(Pt 2):62-69. doi: 10.1107/S2053230X16020586. Epub 2017 Jan 19.
3
Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase.
Mol Biochem Parasitol. 2011 May;177(1):20-8. doi: 10.1016/j.molbiopara.2011.01.003. Epub 2011 Jan 19.
8
Single amino acid changes in AspRS reveal alternative routes for expanding its tRNA repertoire in vivo.
Nucleic Acids Res. 2004 Aug 2;32(13):4081-9. doi: 10.1093/nar/gkh751. Print 2004.
9
Molecular dynamics simulations of cognate and non-cognate AspRS-tRNA complexes.
J Biomol Struct Dyn. 2021 Feb;39(2):493-501. doi: 10.1080/07391102.2019.1711188. Epub 2020 Jan 20.
10
Spectroscopic Studies of Asparaginyl-tRNA Synthetase from .
Protein Pept Lett. 2019 Jul 4;26(6):435-448. doi: 10.2174/0929866526666190327122419.

引用本文的文献

1
3-Dimensional architecture of the human multi-tRNA synthetase complex.
Nucleic Acids Res. 2020 Sep 4;48(15):8740-8754. doi: 10.1093/nar/gkaa569.
2
Ligand co-crystallization of aminoacyl-tRNA synthetases from infectious disease organisms.
Sci Rep. 2017 Mar 16;7(1):223. doi: 10.1038/s41598-017-00367-6.
3
Aminoacyl-tRNA Synthetases in the Bacterial World.
EcoSal Plus. 2016 May;7(1). doi: 10.1128/ecosalplus.ESP-0002-2016.
4
Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design.
Mol Biochem Parasitol. 2013 May;189(1-2):26-32. doi: 10.1016/j.molbiopara.2013.04.007. Epub 2013 May 7.
5
Emergence and evolution.
Top Curr Chem. 2014;344:43-87. doi: 10.1007/128_2013_423.

本文引用的文献

1
Plasmodial aspartyl-tRNA synthetases and peculiarities in Plasmodium falciparum.
J Biol Chem. 2009 Jul 10;284(28):18893-903. doi: 10.1074/jbc.M109.015297. Epub 2009 May 14.
2
Dual targeting of a tRNAAsp requires two different aspartyl-tRNA synthetases in Trypanosoma brucei.
J Biol Chem. 2009 Jun 12;284(24):16210-16217. doi: 10.1074/jbc.M109.005348. Epub 2009 Apr 22.
3
Structural genomics of pathogenic protozoa: an overview.
Methods Mol Biol. 2008;426:497-513. doi: 10.1007/978-1-60327-058-8_33.
4
The Jpred 3 secondary structure prediction server.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W197-201. doi: 10.1093/nar/gkn238. Epub 2008 May 7.
5
From one amino acid to another: tRNA-dependent amino acid biosynthesis.
Nucleic Acids Res. 2008 Apr;36(6):1813-25. doi: 10.1093/nar/gkn015. Epub 2008 Feb 5.
6
BALBES: a molecular-replacement pipeline.
Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):125-32. doi: 10.1107/S0907444907050172. Epub 2007 Dec 5.
8
Inference of macromolecular assemblies from crystalline state.
J Mol Biol. 2007 Sep 21;372(3):774-97. doi: 10.1016/j.jmb.2007.05.022. Epub 2007 May 13.
9
Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes.
Mol Biochem Parasitol. 2006 Aug;148(2):144-60. doi: 10.1016/j.molbiopara.2006.03.011. Epub 2006 Apr 18.
10
Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C.
J Biol Chem. 2006 Jun 30;281(26):18033-42. doi: 10.1074/jbc.M513174200. Epub 2006 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验