Suppr超能文献

使用机器学习方法进行马种歧视。

Horse breed discrimination using machine learning methods.

机构信息

Institute of Animal Physiology and Genetics, AS CR, v.v.i, Czech Republic.

出版信息

J Appl Genet. 2009;50(4):375-7. doi: 10.1007/BF03195696.

Abstract

Genetic relationships and population structure of 8 horse breeds in the Czech and Slovak Republics were investigated using classification methods for breed discrimination. To demonstrate genetic differences among these breeds, we used genetic information - genotype data of microsatellite markers and classification algorithms - to perform a probabilistic prediction of an individual's breed. In total, 932 unrelated animals were genotyped for 17 microsatellite markers recommended by the ISAG for parentage testing (AHT4, AHT5, ASB2, HMS3, HMS6, HMS7, HTG4, HTG10, VHL20, HTG6, HMS2, HTG7, ASB17, ASB23, CA425, HMS1, LEX3). Algorithms of classification methods - J48 (decision trees); Naive Bayes, Bayes Net (probability predictors); IB1, IB5 (instance-based machine learning methods); and JRip (decision rules) - were used for analysis of their classification performance and of results of classification on this genotype dataset. Selected classification methods (Naive Bayes, Bayes Net, IB1), based on machine learning and principles of artificial intelligence, appear usable for these tasks.

摘要

捷克共和国和斯洛伐克共和国的 8 个马品种的遗传关系和群体结构,使用品种判别分类方法进行了研究。为了证明这些品种之间的遗传差异,我们使用遗传信息 - 微卫星标记的基因型数据和分类算法 - 对个体品种进行概率预测。总共对 932 个无亲缘关系的动物进行了 17 个微卫星标记的基因型分析,这些标记是由国际马协会推荐用于亲子关系测试的(AHT4、AHT5、ASB2、HMS3、HMS6、HMS7、HTG4、HTG10、VHL20、HTG6、HMS2、HTG7、ASB17、ASB23、CA425、HMS1、LEX3)。分类方法的算法 - J48(决策树);朴素贝叶斯、贝叶斯网络(概率预测器);IB1、IB5(基于实例的机器学习方法);和 JRip(决策规则) - 用于分析它们的分类性能和在这个基因型数据集上的分类结果。基于机器学习和人工智能原理的选定分类方法(朴素贝叶斯、贝叶斯网络、IB1)似乎可用于这些任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验