INRIA MICMAC, Ecole Nationale des Ponts et Chaussees, 6 and 8 avenue Blaise Pascal, Cite Descartes, Champs-sur-Marne, 77455 Marne La Vallee Cedex 2, France.
Nanotechnology. 2009 Dec 2;20(48):485501. doi: 10.1088/0957-4484/20/48/485501. Epub 2009 Oct 30.
Developments in the field of nanobiodevices coupling nanostructures and biological components are of great interest in medical nanorobotics. As the fundamentals of bio/non-bio interaction processes are still poorly understood in the design of these devices, design tools and multiscale dynamics modeling approaches are necessary at the fabrication pre-project stage. This paper proposes a new concept of optimized carbon nanotube based servomotor design for drug delivery and biomolecular transport applications. The design of an encapsulated DNA-multi-walled carbon nanotube actuator is prototyped using multiscale modeling. The system is parametrized by using a quantum level approach and characterized by using a molecular dynamics simulation. Based on the analysis of the simulation results, a servo nanoactuator using ionic current feedback is simulated and analyzed for application as a drug delivery carrier.
在医学纳米机器人领域,纳米生物器件领域的发展将纳米结构和生物组件结合在一起,这引起了人们极大的兴趣。由于在这些设备的设计中,生物/非生物相互作用过程的基本原理仍了解甚少,因此在制造前项目阶段需要设计工具和多尺度动力学建模方法。本文提出了一种新的基于优化碳纳米管的伺服电机设计概念,用于药物输送和生物分子运输应用。使用多尺度建模对封装 DNA-多壁碳纳米管执行器的设计进行了原型设计。该系统使用量子水平方法进行参数化,并使用分子动力学模拟进行特性描述。基于对模拟结果的分析,模拟和分析了使用离子电流反馈的伺服纳米执行器,将其用作药物输送载体。