Suppr超能文献

蛋白质组学在癌症基因图谱分析中的应用:二维差异凝胶电泳(2D-DIGE)。

Application of proteomics in cancer gene profiling: two-dimensional difference in gel electrophoresis (2D-DIGE).

作者信息

Hariharan Deepak, Weeks Mark E, Crnogorac-Jurcevic Tatjana

机构信息

Cancer Research UK Molecular Oncology Unit, Barts and The London Queen Mary's School of Medicine and Dentistry, John Vane Science Centre, London, UK.

出版信息

Methods Mol Biol. 2010;576:197-211. doi: 10.1007/978-1-59745-545-9_11.

Abstract

In the post-genomic era, proteomic strategies are at the forefront of cancer research. By studying the complement of all expressed genes, proteomics aims to provide knowledge of biomarkers indicative of the physiological state of cancer cells at a specific time, enabling screening, early diagnosis, monitoring the course of cancer development/progression, and gauging the efficacy and safety of novel therapeutic agents. Onco-proteomics thus has the ability to revolutionize oncology practice by delivering highly selective and individualised clinical care. One of the proteomic techniques, two-dimensional (2D) difference in gel electrophoresis (DIGE) enables simultaneous examination and comparison of multiple samples using cyanine dyes to label amino acid residues that are then separated based on charge and mass. This technique reduces variability, improves reproducibility, and allows easier quantitation when compared with traditional 2D polyacrylamide gel electrophoresis (PAGE). These advantages combined with universal availability makes 2D-DIGE a first method of choice in cancer proteome analysis of diverse specimens, including tissues, cell lines, blood, and other body fluids.

摘要

在后基因组时代,蛋白质组学策略处于癌症研究的前沿。通过研究所有表达基因的互补物,蛋白质组学旨在提供特定时间指示癌细胞生理状态的生物标志物知识,从而实现筛查、早期诊断、监测癌症发展/进展过程以及评估新型治疗药物的疗效和安全性。因此,肿瘤蛋白质组学有能力通过提供高度选择性和个性化的临床护理来彻底改变肿瘤学实践。蛋白质组学技术之一,二维(2D)差异凝胶电泳(DIGE),能够使用花青染料标记氨基酸残基,然后基于电荷和质量进行分离,从而同时检测和比较多个样品。与传统的二维聚丙烯酰胺凝胶电泳(PAGE)相比,该技术降低了变异性,提高了重现性,并使定量更容易。这些优点加上普遍可用性,使得二维DIGE成为包括组织、细胞系、血液和其他体液在内的各种标本癌症蛋白质组分析的首选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验