Vishnivetskiy Sergey A, Francis Derek, Van Eps Ned, Kim Miyeon, Hanson Susan M, Klug Candice S, Hubbell Wayne L, Gurevich Vsevolod V
Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
J Mol Biol. 2010 Jan 8;395(1):42-54. doi: 10.1016/j.jmb.2009.10.058. Epub 2009 Oct 31.
Arrestins rapidly bind phosphorylated activated forms of their cognate G protein-coupled receptors, thereby preventing G protein coupling and often switching signaling to other pathways. Amphipathic alpha-helix I (residues 100-111) has been implicated in receptor binding, but the mechanism of its action has not been determined yet. Here we show that several mutations in the helix itself and in adjacent hydrophobic residues in the body of the N-domain reduce arrestin1 binding to light-activated phosphorylated rhodopsin (P-Rh*). On the background of phosphorylation-independent mutants that bind with high affinity to both P-Rh* and light-activated unphosphorylated rhodopsin, these mutations reduce the stability of the arrestin complex with P-Rh*, but not with light-activated unphosphorylated rhodopsin. Using site-directed spin labeling, we found that the local structure around alpha-helix I changes upon binding to rhodopsin. However, the intramolecular distances between alpha-helix I and adjacent beta-strand I (or the rest of the N-domain), measured using double electron-electron resonance, do not change, ruling out relocation of the helix due to receptor binding. Collectively, these data demonstrate that alpha-helix I plays an indirect role in receptor binding, likely keeping beta-strand I, which carries several phosphate-binding residues, in a position favorable for its interaction with receptor-attached phosphates.
抑制蛋白能迅速结合其同源G蛋白偶联受体的磷酸化激活形式,从而阻止G蛋白偶联,并常常将信号转导切换至其他途径。两亲性α螺旋I(第100 - 111位氨基酸残基)与受体结合有关,但其作用机制尚未确定。在此我们表明,该螺旋本身及其在N结构域主体中相邻疏水残基的几个突变会降低抑制蛋白1与光激活的磷酸化视紫红质(P-Rh*)的结合。在与P-Rh和光激活的未磷酸化视紫红质均具有高亲和力结合的磷酸化非依赖性突变体背景下,这些突变降低了抑制蛋白与P-Rh复合物的稳定性,但不影响其与光激活的未磷酸化视紫红质的稳定性。使用定点自旋标记,我们发现α螺旋I周围的局部结构在与视紫红质结合时会发生变化。然而,使用双电子-电子共振测量的α螺旋I与相邻β链I(或N结构域的其余部分)之间的分子内距离并未改变,排除了由于受体结合导致螺旋重新定位的可能性。总体而言,这些数据表明α螺旋I在受体结合中起间接作用,可能是使携带多个磷酸结合残基的β链I处于有利于其与受体附着的磷酸相互作用的位置。