Suppr超能文献

对非视觉 arrestin 的研究揭示了功能位点之间的变构相互作用。

Surveying nonvisual arrestins reveals allosteric interactions between functional sites.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.

Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA.

出版信息

Proteins. 2023 Jan;91(1):99-107. doi: 10.1002/prot.26413. Epub 2022 Aug 27.

Abstract

Arrestins are important scaffolding proteins that are expressed in all vertebrate animals. They regulate cell-signaling events upon binding to active G-protein coupled receptors (GPCR) and trigger endocytosis of active GPCRs. While many of the functional sites on arrestins have been characterized, the question of how these sites interact is unanswered. We used anisotropic network modeling (ANM) together with our covariance compliment techniques to survey all the available structures of the nonvisual arrestins to map how structural changes and protein-binding affect their structural dynamics. We found that activation and clathrin binding have a marked effect on arrestin dynamics, and that these dynamics changes are localized to a small number of distant functional sites. These sites include α-helix 1, the lariat loop, nuclear localization domain, and the C-domain β-sheets on the C-loop side. Our techniques suggest that clathrin binding and/or GPCR activation of arrestin perturb the dynamics of these sites independent of structural changes.

摘要

arrestins 是在所有脊椎动物中表达的重要支架蛋白。它们在与活性 G 蛋白偶联受体 (GPCR) 结合后调节细胞信号事件,并触发活性 GPCR 的内吞作用。虽然 arrestins 的许多功能位点已经得到了描述,但这些位点如何相互作用的问题仍未得到解答。我们使用各向异性网络建模 (ANM) 结合协方差互补技术,对所有可用的非视觉 arrestins 结构进行了调查,以绘制结构变化和蛋白质结合如何影响它们的结构动力学。我们发现,激活和网格蛋白结合对 arrestin 动力学有显著影响,并且这些动力学变化局限于少数几个遥远的功能位点。这些位点包括 α 螺旋 1、套索环、核定位域和 C 环侧的 C 结构域 β 片层。我们的技术表明,网格蛋白结合和/或 GPCR 激活 arrestin 会干扰这些位点的动力学,而与结构变化无关。

相似文献

1
Surveying nonvisual arrestins reveals allosteric interactions between functional sites.
Proteins. 2023 Jan;91(1):99-107. doi: 10.1002/prot.26413. Epub 2022 Aug 27.
2
β-arrestins and G protein-coupled receptor trafficking.
Handb Exp Pharmacol. 2014;219:173-86. doi: 10.1007/978-3-642-41199-1_9.
3
β-Arrestins and G protein-coupled receptor trafficking.
Methods Enzymol. 2013;521:91-108. doi: 10.1016/B978-0-12-391862-8.00005-3.
5
β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation.
Nat Cell Biol. 2016 Mar;18(3):303-10. doi: 10.1038/ncb3307. Epub 2016 Feb 1.
9
Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics.
Cell. 2022 Nov 23;185(24):4560-4573.e19. doi: 10.1016/j.cell.2022.10.018. Epub 2022 Nov 10.
10
A beta-arrestin binding determinant common to the second intracellular loops of rhodopsin family G protein-coupled receptors.
J Biol Chem. 2006 Feb 3;281(5):2932-8. doi: 10.1074/jbc.M508074200. Epub 2005 Nov 30.

引用本文的文献

1
Membrane phosphoinositides allosterically tune β-arrestin dynamics to facilitate GPCR core engagement.
bioRxiv. 2025 Jun 8:2025.06.06.658200. doi: 10.1101/2025.06.06.658200.
2
Association of Neurokinin-1 Receptor Signaling Pathways with Cancer.
Curr Med Chem. 2024;31(39):6460-6486. doi: 10.2174/0929867331666230818110812.

本文引用的文献

1
Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2.
Nat Commun. 2021 Apr 22;12(1):2396. doi: 10.1038/s41467-021-22731-x.
2
Receptor-Arrestin Interactions: The GPCR Perspective.
Biomolecules. 2021 Feb 4;11(2):218. doi: 10.3390/biom11020218.
4
Lysine in the lariat loop of arrestins does not serve as phosphate sensor.
J Neurochem. 2021 Feb;156(4):435-444. doi: 10.1111/jnc.15110. Epub 2020 Jul 11.
5
Molecular basis of β-arrestin coupling to formoterol-bound β-adrenoceptor.
Nature. 2020 Jul;583(7818):862-866. doi: 10.1038/s41586-020-2419-1. Epub 2020 Jun 17.
6
Conformational Dynamics and Functional Implications of Phosphorylated β-Arrestins.
Structure. 2020 Mar 3;28(3):314-323.e3. doi: 10.1016/j.str.2019.12.008. Epub 2020 Jan 13.
7
Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc.
Nature. 2020 Mar;579(7798):297-302. doi: 10.1038/s41586-020-1954-0. Epub 2020 Jan 16.
8
Structure of the neurotensin receptor 1 in complex with β-arrestin 1.
Nature. 2020 Mar;579(7798):303-308. doi: 10.1038/s41586-020-1953-1. Epub 2020 Jan 16.
9
Best Practices for Foundations in Molecular Simulations [Article v1.0].
Living J Comput Mol Sci. 2019;1(1). doi: 10.33011/livecoms.1.1.5957. Epub 2018 Nov 29.
10
A complex structure of arrestin-2 bound to a G protein-coupled receptor.
Cell Res. 2019 Dec;29(12):971-983. doi: 10.1038/s41422-019-0256-2. Epub 2019 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验