Suppr超能文献

衔接蛋白环赖氨酸不作为磷酸传感器。

Lysine in the lariat loop of arrestins does not serve as phosphate sensor.

机构信息

Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.

Pomona College, Claremont, CA, USA.

出版信息

J Neurochem. 2021 Feb;156(4):435-444. doi: 10.1111/jnc.15110. Epub 2020 Jul 11.

Abstract

Arrestins demonstrate strong preference for phosphorylated over unphosphorylated receptors, but how arrestins "sense" receptor phosphorylation is unclear. A conserved lysine in the lariat loop of arrestins directly binds the phosphate in crystal structures of activated arrestin-1, -2, and -3. The lariat loop supplies two negative charges to the central polar core, which must be disrupted for arrestin activation and high-affinity receptor binding. Therefore, we hypothesized that receptor-attached phosphates pull the lariat loop via this lysine, thus removing the negative charges and destabilizing the polar core. We tested the role of this lysine by introducing charge elimination (Lys->Ala) and reversal (Lys->Glu) mutations in arrestin-1, -2, and -3. These mutations in arrestin-1 only moderately reduced phospho-rhodopsin binding and had no detectable effect on arrestin-2 and -3 binding to cognate non-visual receptors in cells. The mutations of Lys300 in bovine and homologous Lys301 in mouse arrestin-1 on the background of pre-activated mutants had variable effects on the binding to light-activated phosphorylated rhodopsin, while affecting the binding to unphosphorylated rhodopsin to a greater extent. Thus, conserved lysine in the lariat loop participates in receptor binding, but does not play a critical role in phosphate-induced arrestin activation.

摘要

抑制蛋白对磷酸化的受体表现出强烈的偏好,而非磷酸化的受体,但抑制蛋白如何“感知”受体磷酸化仍不清楚。在激活的抑制蛋白-1、-2 和 -3 的晶体结构中,抑制蛋白的套索环中的一个保守赖氨酸直接结合在磷酸基团上。套索环向极性核心提供两个负电荷,这两个负电荷必须被破坏,才能使抑制蛋白激活并与受体高亲和力结合。因此,我们假设受体连接的磷酸基团通过这个赖氨酸拉动套索环,从而去除负电荷并使极性核心不稳定。我们通过在抑制蛋白-1、-2 和 -3 中引入电荷消除(Lys->Ala)和反转(Lys->Glu)突变来测试这个赖氨酸的作用。抑制蛋白-1 中的这些突变仅适度降低了磷酸视黄醛的结合,对抑制蛋白-2 和 -3 与细胞中同源非视觉受体的结合没有可检测到的影响。在预先激活的突变体背景下,牛的抑制蛋白-1 中的 Lys300 和鼠的同源 Lys301 突变对与光激活的磷酸化视黄醛的结合有不同的影响,而对未磷酸化视黄醛的结合影响更大。因此,套索环中的保守赖氨酸参与受体结合,但在磷酸诱导的抑制蛋白激活中不起关键作用。

相似文献

1
Lysine in the lariat loop of arrestins does not serve as phosphate sensor.
J Neurochem. 2021 Feb;156(4):435-444. doi: 10.1111/jnc.15110. Epub 2020 Jul 11.
2
Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors.
J Biol Chem. 2012 Mar 16;287(12):9028-40. doi: 10.1074/jbc.M111.311803. Epub 2012 Jan 24.
3
The finger loop as an activation sensor in arrestin.
J Neurochem. 2021 May;157(4):1138-1152. doi: 10.1111/jnc.15232. Epub 2020 Nov 27.
4
Critical role of the central 139-loop in stability and binding selectivity of arrestin-1.
J Biol Chem. 2013 Apr 26;288(17):11741-50. doi: 10.1074/jbc.M113.450031. Epub 2013 Mar 8.
5
Conformational changes in the phosphorylated C-terminal domain of rhodopsin during rhodopsin arrestin interactions.
J Biol Chem. 2004 Dec 3;279(49):51203-7. doi: 10.1074/jbc.M407341200. Epub 2004 Sep 6.
6
GPCR Binding and JNK3 Activation by Arrestin-3 Have Different Structural Requirements.
Cells. 2023 Jun 6;12(12):1563. doi: 10.3390/cells12121563.
8
Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors.
Cell Signal. 2017 Aug;36:98-107. doi: 10.1016/j.cellsig.2017.04.021. Epub 2017 Apr 28.
9
The Role of Arrestin-1 Middle Loop in Rhodopsin Binding.
Int J Mol Sci. 2022 Nov 11;23(22):13887. doi: 10.3390/ijms232213887.
10
Crystal structure of pre-activated arrestin p44.
Nature. 2013 May 2;497(7447):142-6. doi: 10.1038/nature12133. Epub 2013 Apr 21.

引用本文的文献

1
The Role of Individual Residues in the N-Terminus of Arrestin-1 in Rhodopsin Binding.
Int J Mol Sci. 2025 Jan 16;26(2):715. doi: 10.3390/ijms26020715.
2
Arrestins: A Small Family of Multi-Functional Proteins.
Int J Mol Sci. 2024 Jun 6;25(11):6284. doi: 10.3390/ijms25116284.
3
GPCR Binding and JNK3 Activation by Arrestin-3 Have Different Structural Requirements.
Cells. 2023 Jun 6;12(12):1563. doi: 10.3390/cells12121563.
4
Functional Role of Arrestin-1 Residues Interacting with Unphosphorylated Rhodopsin Elements.
Int J Mol Sci. 2023 May 17;24(10):8903. doi: 10.3390/ijms24108903.
5
GPCR binding and JNK3 activation by arrestin-3 have different structural requirements.
bioRxiv. 2023 May 1:2023.05.01.538990. doi: 10.1101/2023.05.01.538990.
6
Phosphorylation barcodes direct biased chemokine signaling at CXCR3.
Cell Chem Biol. 2023 Apr 20;30(4):362-382.e8. doi: 10.1016/j.chembiol.2023.03.006. Epub 2023 Apr 7.
7
The Role of Arrestin-1 Middle Loop in Rhodopsin Binding.
Int J Mol Sci. 2022 Nov 11;23(22):13887. doi: 10.3390/ijms232213887.
8
Surveying nonvisual arrestins reveals allosteric interactions between functional sites.
Proteins. 2023 Jan;91(1):99-107. doi: 10.1002/prot.26413. Epub 2022 Aug 27.
9
G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias.
J Biol Chem. 2022 Sep;298(9):102279. doi: 10.1016/j.jbc.2022.102279. Epub 2022 Jul 19.
10
Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes.
Curr Opin Struct Biol. 2022 Aug;75:102406. doi: 10.1016/j.sbi.2022.102406. Epub 2022 Jun 20.

本文引用的文献

1
Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc.
Nature. 2020 Mar;579(7798):297-302. doi: 10.1038/s41586-020-1954-0. Epub 2020 Jan 16.
2
Structure of the neurotensin receptor 1 in complex with β-arrestin 1.
Nature. 2020 Mar;579(7798):303-308. doi: 10.1038/s41586-020-1953-1. Epub 2020 Jan 16.
3
A complex structure of arrestin-2 bound to a G protein-coupled receptor.
Cell Res. 2019 Dec;29(12):971-983. doi: 10.1038/s41422-019-0256-2. Epub 2019 Nov 27.
4
Critical role of the finger loop in arrestin binding to the receptors.
PLoS One. 2019 Mar 15;14(3):e0213792. doi: 10.1371/journal.pone.0213792. eCollection 2019.
5
Structural Basis of Arrestin-Dependent Signal Transduction.
Trends Biochem Sci. 2018 Jun;43(6):412-423. doi: 10.1016/j.tibs.2018.03.005. Epub 2018 Apr 7.
6
Lack of beta-arrestin signaling in the absence of active G proteins.
Nat Commun. 2018 Jan 23;9(1):341. doi: 10.1038/s41467-017-02661-3.
7
Molecular Defects of the Disease-Causing Human Arrestin-1 C147F Mutant.
Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):13-20. doi: 10.1167/iovs.17-22180.
8
Structural basis of arrestin-3 activation and signaling.
Nat Commun. 2017 Nov 10;8(1):1427. doi: 10.1038/s41467-017-01218-8.
9
Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.
Cell. 2017 Jul 27;170(3):457-469.e13. doi: 10.1016/j.cell.2017.07.002.
10
Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes.
BMC Evol Biol. 2017 Jul 6;17(1):163. doi: 10.1186/s12862-017-1001-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验