Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK.
EMBO J. 2009 Dec 2;28(23):3771-9. doi: 10.1038/emboj.2009.310. Epub 2009 Nov 5.
Vacuolar-type ATPases (V-ATPases) exist in various cellular membranes of many organisms to regulate physiological processes by controlling the acidic environment. Here, we have determined the crystal structure of the A(3)B(3) subcomplex of V-ATPase at 2.8 A resolution. The overall construction of the A(3)B(3) subcomplex is significantly different from that of the alpha(3)beta(3) sub-domain in F(o)F(1)-ATP synthase, because of the presence of a protruding 'bulge' domain feature in the catalytic A subunits. The A(3)B(3) subcomplex structure provides the first molecular insight at the catalytic and non-catalytic interfaces, which was not possible in the structures of the separate subunits alone. Specifically, in the non-catalytic interface, the B subunit seems to be incapable of binding ATP, which is a marked difference from the situation indicated by the structure of the F(o)F(1)-ATP synthase. In the catalytic interface, our mutational analysis, on the basis of the A(3)B(3) structure, has highlighted the presence of a cluster composed of key hydrophobic residues, which are essential for ATP hydrolysis by V-ATPases.
液泡型 ATP 酶(V-ATPases)存在于许多生物体的各种细胞膜中,通过控制酸性环境来调节生理过程。在这里,我们确定了 V-ATPase 的 A(3)B(3)亚基复合物的晶体结构,分辨率为 2.8Å。由于在催化 A 亚基中存在突出的“隆起”结构域特征,A(3)B(3)亚基复合物的整体结构与 F(o)F(1)-ATP 合酶的 alpha(3)beta(3)亚域明显不同。A(3)B(3)亚基复合物的结构提供了在催化和非催化界面的第一个分子见解,这在单独亚基的结构中是不可能的。具体而言,在非催化界面中,B 亚基似乎不能结合 ATP,这与 F(o)F(1)-ATP 合酶的结构所表明的情况有明显的不同。在催化界面上,我们基于 A(3)B(3)结构的突变分析,突出了一个由关键疏水性残基组成的簇的存在,该簇对于 V-ATPases 的 ATP 水解是必需的。