Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo, 113-8656, Japan.
Department of Chemistry, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan.
Cell Mol Life Sci. 2018 May;75(10):1789-1802. doi: 10.1007/s00018-018-2758-3. Epub 2018 Jan 31.
Rotary ATPases are unique rotary molecular motors that function as energy conversion machines. Among all known rotary ATPases, F-ATPase is the best characterized rotary molecular motor. There are many high-resolution crystal structures and the rotation dynamics have been investigated in detail by extensive single-molecule studies. In contrast, knowledge on the structure and rotation dynamics of V-ATPase, another rotary ATPase, has been limited. However, recent high-resolution structural studies and single-molecule studies on V-ATPase have provided new insights on how the catalytic sites in this molecular motor change its conformation during rotation driven by ATP hydrolysis. In this review, we summarize recent information on the structural features and rotary dynamics of V-ATPase revealed from structural and single-molecule approaches and discuss the possible chemomechanical coupling scheme of V-ATPase with a focus on differences between rotary molecular motors.
旋转 ATP 酶是独特的旋转分子马达,作为能量转换机器发挥作用。在所有已知的旋转 ATP 酶中,F-ATP 酶是研究得最透彻的旋转分子马达。已经有许多高分辨率的晶体结构,并且通过广泛的单分子研究详细研究了其旋转动力学。相比之下,对于另一种旋转 ATP 酶 V-ATP 酶的结构和旋转动力学的了解则受到限制。然而,最近对 V-ATP 酶的高分辨率结构研究和单分子研究提供了新的见解,说明在 ATP 水解驱动的旋转过程中,这个分子马达的催化部位如何改变其构象。在这篇综述中,我们总结了结构和单分子方法揭示的 V-ATP 酶的结构特征和旋转动力学的最新信息,并讨论了 V-ATP 酶的可能化学机械偶联方案,重点是旋转分子马达之间的差异。