Suppr超能文献

ADP 抑制液泡 (V)-型 ATP 酶/合成酶的分子基础。

Molecular basis of ADP inhibition of vacuolar (V)-type ATPase/synthase.

机构信息

From the Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto 603-8555, Japan.

出版信息

J Biol Chem. 2014 Jan 3;289(1):403-12. doi: 10.1074/jbc.M113.523498. Epub 2013 Nov 18.

Abstract

Reduction of ATP hydrolysis activity of vacuolar-type ATPase/synthase (V0V1) as a result of ADP inhibition occurs as part of the normal mechanism of V0V1 of Thermus thermophilus but not V0V1 of Enterococcus hirae or eukaryotes. To investigate the molecular basis for this difference, domain-swapped chimeric V1 consisting of both T. thermophilus and E. hirae enzymes were generated, and their function was analyzed. The data showed that the interaction between the nucleotide binding and C-terminal domains of the catalytic A subunit from E. hirae V1 is central to increasing binding affinity of the chimeric V1 for phosphate, resulting in reduction of the ADP inhibition. These findings together with a comparison of the crystal structures of T. thermophilus V1 with E. hirae V1 strongly suggest that the A subunit adopts a conformation in T. thermophilus V1 different from that in E. hirae V1. This key difference results in ADP inhibition of T. thermophilus V1 by abolishing the binding affinity for phosphate during ATP hydrolysis.

摘要

作为 Thermus thermophilus V0V1 正常机制的一部分,会发生由于 ADP 抑制导致液泡型 ATP 酶/合成酶 (V0V1) 的 ATP 水解活性降低,但 Enterococcus hirae 或真核生物的 V0V1 不会。为了研究这种差异的分子基础,生成了由 Thermus thermophilus 和 Enterococcus hirae 酶组成的域交换嵌合 V1,并分析了它们的功能。数据表明,来自 E. hirae V1 的催化 A 亚基核苷酸结合和 C 末端结构域之间的相互作用对于增加嵌合 V1 对磷酸盐的结合亲和力是至关重要的,从而降低了 ADP 的抑制作用。这些发现以及 Thermus thermophilus V1 与 E. hirae V1 的晶体结构比较强烈表明,A 亚基在 Thermus thermophilus V1 中采用的构象与 E. hirae V1 不同。这种关键差异导致在 ATP 水解过程中通过消除磷酸盐的结合亲和力来抑制 Thermus thermophilus V1 的 ADP。

相似文献

1
Molecular basis of ADP inhibition of vacuolar (V)-type ATPase/synthase.
J Biol Chem. 2014 Jan 3;289(1):403-12. doi: 10.1074/jbc.M113.523498. Epub 2013 Nov 18.
2
Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase.
J Biol Chem. 2013 Nov 8;288(45):32700-32707. doi: 10.1074/jbc.M113.506329. Epub 2013 Oct 2.
3
An affinity change model to elucidate the rotation mechanism of V-ATPase.
Biochem Biophys Res Commun. 2020 Dec 17;533(4):1413-1418. doi: 10.1016/j.bbrc.2020.10.033. Epub 2020 Oct 21.
4
Crystal structure of A3B3 complex of V-ATPase from Thermus thermophilus.
EMBO J. 2009 Dec 2;28(23):3771-9. doi: 10.1038/emboj.2009.310. Epub 2009 Nov 5.
5
V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP.
J Biol Chem. 1998 Aug 7;273(32):20504-10. doi: 10.1074/jbc.273.32.20504.
6
Torque generation of Enterococcus hirae V-ATPase.
J Biol Chem. 2014 Nov 7;289(45):31212-23. doi: 10.1074/jbc.M114.598177. Epub 2014 Sep 25.
7
Cryo EM structure of intact rotary H-ATPase/synthase from Thermus thermophilus.
Nat Commun. 2018 Jan 8;9(1):89. doi: 10.1038/s41467-017-02553-6.
9
Origin of asymmetry at the intersubunit interfaces of V1-ATPase from Thermus thermophilus.
J Mol Biol. 2013 Aug 9;425(15):2699-708. doi: 10.1016/j.jmb.2013.04.022. Epub 2013 Apr 29.
10
Structure and conformational plasticity of the intact V/A-type ATPase.
Science. 2019 Aug 23;365(6455). doi: 10.1126/science.aaw9144.

引用本文的文献

1
ATP synthesis of Enterococcus hirae V-ATPase driven by sodium motive force.
J Biol Chem. 2025 Apr;301(4):108422. doi: 10.1016/j.jbc.2025.108422. Epub 2025 Mar 19.
3
Regulation of the mammalian-brain V-ATPase through ultraslow mode-switching.
Nature. 2022 Nov;611(7937):827-834. doi: 10.1038/s41586-022-05472-9. Epub 2022 Nov 23.
5
Cryo EM structure of intact rotary H-ATPase/synthase from Thermus thermophilus.
Nat Commun. 2018 Jan 8;9(1):89. doi: 10.1038/s41467-017-02553-6.
6
Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans.
J Biol Chem. 2015 Nov 6;290(45):27280-27296. doi: 10.1074/jbc.M115.677492. Epub 2015 Sep 14.
7
The ingenious structure of central rotor apparatus in VoV1; key for both complex disassembly and energy coupling between V1 and Vo.
PLoS One. 2015 Mar 10;10(3):e0119602. doi: 10.1371/journal.pone.0119602. eCollection 2015.
8
F-subunit reinforces torque generation in V-ATPase.
Eur Biophys J. 2014 Sep;43(8-9):415-22. doi: 10.1007/s00249-014-0973-x. Epub 2014 Jul 11.

本文引用的文献

1
Origin of asymmetry at the intersubunit interfaces of V1-ATPase from Thermus thermophilus.
J Mol Biol. 2013 Aug 9;425(15):2699-708. doi: 10.1016/j.jmb.2013.04.022. Epub 2013 Apr 29.
2
Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures.
Nature. 2013 Jan 31;493(7434):703-7. doi: 10.1038/nature11778. Epub 2013 Jan 13.
3
Reconstitution of vacuolar-type rotary H+-ATPase/synthase from Thermus thermophilus.
J Biol Chem. 2012 Jul 13;287(29):24597-603. doi: 10.1074/jbc.M112.367813. Epub 2012 May 11.
4
Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase.
Nature. 2011 Dec 18;481(7380):214-8. doi: 10.1038/nature10699.
5
Crystal structure of the central axis DF complex of the prokaryotic V-ATPase.
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):19955-60. doi: 10.1073/pnas.1108810108. Epub 2011 Nov 23.
6
Structural divergence of the rotary ATPases.
Q Rev Biophys. 2011 Aug;44(3):311-56. doi: 10.1017/S0033583510000338. Epub 2011 Mar 22.
8
Crystal structure of A3B3 complex of V-ATPase from Thermus thermophilus.
EMBO J. 2009 Dec 2;28(23):3771-9. doi: 10.1038/emboj.2009.310. Epub 2009 Nov 5.
9
ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus.
J Biol Chem. 2008 Jul 25;283(30):20789-96. doi: 10.1074/jbc.M801276200. Epub 2008 May 20.
10
Temperature dependence of the rotation and hydrolysis activities of F1-ATPase.
Biophys J. 2008 Jul;95(2):761-70. doi: 10.1529/biophysj.107.123307. Epub 2008 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验