Suppr超能文献

粒细胞-巨噬细胞集落刺激因子(GM-CSF)是主要的乳腺癌来源的可溶性因子之一,可诱导 CD11b-Gr1-骨髓祖细胞向髓源性抑制细胞分化。

GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells.

机构信息

Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Box 980035, 401 College St, Richmond, VA 23298, USA.

出版信息

Breast Cancer Res Treat. 2010 Aug;123(1):39-49. doi: 10.1007/s10549-009-0622-8. Epub 2009 Nov 8.

Abstract

Recent reports have shown the involvement of tumor burden as well as GM-CSF in supporting myeloid-derived suppressor cells (MDSC). However, it is not known what progenitor cells may differentiate into MDSC in the presence of GM-CSF, and whether FVBN202 transgenic mouse model of spontaneous breast carcinoma may exhibit distinct subset distribution of CD11b+Gr1+ cells. In addition, it is not known why CD11b+Gr1+ cells derived from tumor-free and tumor-bearing animals exhibit different functions. In this study, we determined that GM-CSF was one of the tumor-derived soluble factors that induced differentiation of CD11b-Gr1- progenitor cells from within monocytic/granulocytic bone marrow cells into CD11b+Gr1+ cells. We also showed that CD11b+Gr1+ cells in FVBN202 mice consisted of CD11b+Ly6G-Ly6C+ suppressive and CD11b+Ly6G+Ly6C+ non-suppressive subsets. Previously reported variations between tumor-free and tumor-bearing animals in the function of their CD11b+Gr1+ cells were found to be due to the variations in the proportion of these two subsets. Therefore, increasing ratios of CD11b+Gr1+ cells derived from tumor-free animals revealed their suppressive activity on T cells, in vitro. Importantly, GM-CSF supported the generation of CD11b+Ly6G-Ly6C+ suppressor subsets that inhibited proliferation as well as anti-tumor function of neu-specific T cells. These findings suggest revisiting the use of GM-CSF for the expansion of dendritic cells, ex vivo, for cell-based immunotherapy or as an adjuvant for vaccines for patients with cancer in whom MDSC play a major role in the suppression of anti-tumor immune responses.

摘要

最近的报告表明,肿瘤负担以及 GM-CSF 均参与支持髓系来源的抑制性细胞(MDSC)。然而,目前尚不清楚在 GM-CSF 存在的情况下,哪种祖细胞可能分化为 MDSC,以及 FVBN202 自发性乳腺癌转基因小鼠模型是否会表现出不同的 CD11b+Gr1+细胞亚群分布。此外,尚不清楚为什么来自无肿瘤和荷瘤动物的 CD11b+Gr1+细胞表现出不同的功能。在这项研究中,我们确定 GM-CSF 是肿瘤来源的可溶性因子之一,可诱导单核细胞/粒细胞骨髓细胞中 CD11b-Gr1-祖细胞分化为 CD11b+Gr1+细胞。我们还表明,FVBN202 小鼠中的 CD11b+Gr1+细胞由 CD11b+Ly6G-Ly6C+抑制性和 CD11b+Ly6G+Ly6C+非抑制性亚群组成。先前报道的无肿瘤和荷瘤动物之间的 CD11b+Gr1+细胞功能差异归因于这两个亚群比例的差异。因此,增加来自无肿瘤动物的 CD11b+Gr1+细胞的比例会揭示其对 T 细胞的抑制活性,在体外。重要的是,GM-CSF 支持 CD11b+Ly6G-Ly6C+抑制性亚群的产生,该亚群抑制增殖以及 neu 特异性 T 细胞的抗肿瘤功能。这些发现提示重新考虑 GM-CSF 用于体外扩增树突状细胞、用于细胞免疫治疗或作为癌症患者疫苗的佐剂的用途,因为 MDSC 在抑制抗肿瘤免疫反应中起着重要作用。

相似文献

4
IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation.
J Immunol. 2015 Mar 1;194(5):2369-79. doi: 10.4049/jimmunol.1402412. Epub 2015 Feb 2.
6
Expansion of CD11b(+)Ly6G (+)Ly6C (int) cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions.
Cancer Immunol Immunother. 2013 Dec;62(12):1781-95. doi: 10.1007/s00262-013-1483-x. Epub 2013 Oct 11.

引用本文的文献

2
Advancing Cholangiocarcinoma Care: Insights and Innovations in T Cell Therapy.
Cancers (Basel). 2024 Sep 23;16(18):3232. doi: 10.3390/cancers16183232.
3
The crosstalk between lung cancer and the bone marrow niche fuels emergency myelopoiesis.
Front Immunol. 2024 Aug 1;15:1397469. doi: 10.3389/fimmu.2024.1397469. eCollection 2024.
4
Emergency myelopoiesis in solid cancers.
Br J Haematol. 2024 Sep;205(3):798-811. doi: 10.1111/bjh.19656. Epub 2024 Jul 23.
5
Dual roles of myeloid-derived suppressor cells in various diseases: a review.
Arch Pharm Res. 2024 Jul;47(7):597-616. doi: 10.1007/s12272-024-01504-2. Epub 2024 Jul 15.
7
DNA Damage-driven Inflammatory Cytokines: Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy.
Curr Med Sci. 2024 Apr;44(2):261-272. doi: 10.1007/s11596-024-2859-1. Epub 2024 Apr 2.
8
Alterations in the mammary gland and tumor microenvironment of formerly obese mice.
BMC Cancer. 2023 Dec 1;23(1):1183. doi: 10.1186/s12885-023-11688-3.
9
The recent progress of myeloid-derived suppressor cell and its targeted therapies in cancers.
MedComm (2020). 2023 Aug 2;4(4):e323. doi: 10.1002/mco2.323. eCollection 2023 Aug.
10
Targeting immunosuppressive Ly6C+ classical monocytes reverses anti-PD-1/CTLA-4 immunotherapy resistance.
Front Immunol. 2023 Jun 28;14:1161869. doi: 10.3389/fimmu.2023.1161869. eCollection 2023.

本文引用的文献

2
Subsets of myeloid-derived suppressor cells in tumor-bearing mice.
J Immunol. 2008 Oct 15;181(8):5791-802. doi: 10.4049/jimmunol.181.8.5791.
7
The inflammatory chemokines CCL2 and CCL5 in breast cancer.
Cancer Lett. 2008 Aug 28;267(2):271-85. doi: 10.1016/j.canlet.2008.03.018. Epub 2008 Apr 24.
9
Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice.
Blood. 2008 Jun 15;111(12):5457-66. doi: 10.1182/blood-2008-01-136895. Epub 2008 Mar 28.
10
Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells.
Immunol Rev. 2008 Apr;222:162-79. doi: 10.1111/j.1600-065X.2008.00602.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验