Suppr超能文献

人类听众区分前后的能力。

On the ability of human listeners to distinguish between front and back.

机构信息

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Hear Res. 2010 Feb;260(1-2):30-46. doi: 10.1016/j.heares.2009.11.001. Epub 2009 Nov 10.

Abstract

In order to determine whether a sound source is in front or in back, listeners can use location-dependent spectral cues caused by diffraction from their anatomy. This capability was studied using a precise virtual reality technique (VRX) based on a transaural technology. Presented with a virtual baseline simulation accurate up to 16 kHz, listeners could not distinguish between the simulation and a real source. Experiments requiring listeners to discriminate between front and back locations were performed using controlled modifications of the baseline simulation to test hypotheses about the important spectral cues. The experiments concluded: (1) Front/back cues were not confined to any particular 1/3rd or 2/3rd octave frequency region. Often adequate cues were available in any of several disjoint frequency regions. (2) Spectral dips were more important than spectral peaks. (3) Neither monaural cues nor interaural spectral level difference cues were adequate. (4) Replacing baseline spectra by sharpened spectra had minimal effect on discrimination performance. (5) When presented with an interaural time difference less than 200 micros, which pulled the image to the side, listeners still successfully discriminated between front and back, suggesting that front/back discrimination is independent of azimuthal localization within certain limits.

摘要

为了确定声源是在前方还是在后方,听众可以利用其解剖结构衍射引起的依赖于位置的谱线索。这项能力是使用一种基于双耳技术的精确虚拟现实技术(VRX)进行研究的。呈现出高达 16 kHz 的精确虚拟基线模拟,听众无法区分模拟和真实声源。使用对基线模拟的受控修改来执行要求听众区分前后位置的实验,以测试有关重要谱线索的假设。实验得出结论:(1)前后线索不限于任何特定的 1/3 或 2/3 倍频程频率区域。通常,在几个不连续的频率区域中都有足够的线索。(2)谱凹陷比谱峰更重要。(3)单耳线索和耳间谱水平差线索都不充分。(4)用锐化谱代替基线谱对辨别性能的影响最小。(5)当呈现小于 200 微秒的耳间时间差,使图像移到一侧时,听众仍然能够成功区分前后,这表明在一定限制内,前后辨别与方位定位无关。

相似文献

1
On the ability of human listeners to distinguish between front and back.
Hear Res. 2010 Feb;260(1-2):30-46. doi: 10.1016/j.heares.2009.11.001. Epub 2009 Nov 10.
3
Utility of monaural spectral cues is enhanced in the presence of cues to sound-source lateral angle.
J Assoc Res Otolaryngol. 2004 Mar;5(1):80-9. doi: 10.1007/s10162-003-3003-8. Epub 2003 Dec 18.
5
Contrasting monaural and interaural spectral cues for human sound localization.
J Acoust Soc Am. 2004 Jun;115(6):3124-41. doi: 10.1121/1.1736649.
6
Randomizing spectral cues used to resolve front-back reversals in sound-source localization.
J Acoust Soc Am. 2023 Aug 1;154(2):661-670. doi: 10.1121/10.0020563.
7
Head Movements Allow Listeners Bilaterally Implanted With Cochlear Implants to Resolve Front-Back Confusions.
Ear Hear. 2018 Nov/Dec;39(6):1224-1231. doi: 10.1097/AUD.0000000000000581.
8
Resolving front-back ambiguity with head rotation: The role of level dynamics.
Hear Res. 2019 Jun;377:196-207. doi: 10.1016/j.heares.2019.03.020. Epub 2019 Apr 1.
9
10
Use of binaural and monaural cues to identify the lateral position of a virtual object using echoes.
Hear Res. 2015 May;323:32-9. doi: 10.1016/j.heares.2015.01.012. Epub 2015 Feb 7.

引用本文的文献

1
Spectral Weighting of Monaural Cues for Auditory Localization in Sagittal Planes.
Trends Hear. 2025 Jan-Dec;29:23312165251317027. doi: 10.1177/23312165251317027. Epub 2025 Mar 18.
2
Binaural Modelling and Spatial Auditory Cue Analysis of 3D-Printed Ears.
Sensors (Basel). 2021 Jan 1;21(1):227. doi: 10.3390/s21010227.
3
Individual listener differences in azimuthal front-back reversals.
J Acoust Soc Am. 2019 Oct;146(4):2709. doi: 10.1121/1.5129555.
4
Transaural experiments and a revised duplex theory for the localization of low-frequency tones.
J Acoust Soc Am. 2016 Feb;139(2):968-85. doi: 10.1121/1.4941915.
5
Perceptual factors contribute more than acoustical factors to sound localization abilities with virtual sources.
Front Neurosci. 2015 Jan 29;8:451. doi: 10.3389/fnins.2014.00451. eCollection 2014.
7
Modeling sound-source localization in sagittal planes for human listeners.
J Acoust Soc Am. 2014 Aug;136(2):791-802. doi: 10.1121/1.4887447.
8
Acoustic and non-acoustic factors in modeling listener-specific performance of sagittal-plane sound localization.
Front Psychol. 2014 Apr 23;5:319. doi: 10.3389/fpsyg.2014.00319. eCollection 2014.
9
Vertical-plane sound localization with distorted spectral cues.
Hear Res. 2013 Dec;306:76-92. doi: 10.1016/j.heares.2013.09.007. Epub 2013 Sep 27.

本文引用的文献

1
Binaural weighting of monaural spectral cues for sound localization.
J Acoust Soc Am. 2007 Jun;121(6):3677-88. doi: 10.1121/1.2722048.
2
3
Contrasting monaural and interaural spectral cues for human sound localization.
J Acoust Soc Am. 2004 Jun;115(6):3124-41. doi: 10.1121/1.1736649.
4
The influence of duration and level on human sound localization.
J Acoust Soc Am. 2004 Apr;115(4):1705-13. doi: 10.1121/1.1687423.
5
Utility of monaural spectral cues is enhanced in the presence of cues to sound-source lateral angle.
J Assoc Res Otolaryngol. 2004 Mar;5(1):80-9. doi: 10.1007/s10162-003-3003-8. Epub 2003 Dec 18.
6
Vertical-plane sound localization probed with ripple-spectrum noise.
J Acoust Soc Am. 2003 Jul;114(1):430-45. doi: 10.1121/1.1582174.
7
Binaural weighting of pinna cues in human sound localization.
Exp Brain Res. 2003 Feb;148(4):458-70. doi: 10.1007/s00221-002-1320-5. Epub 2002 Dec 6.
8
Contribution of spectral cues to human sound localization.
J Acoust Soc Am. 2002 Oct;112(4):1583-96. doi: 10.1121/1.1501901.
9
Listener weighting of cues for lateral angle: the duplex theory of sound localization revisited.
J Acoust Soc Am. 2002 May;111(5 Pt 1):2219-36. doi: 10.1121/1.1471898.
10
Type III units in the gerbil dorsal cochlear nucleus may be spectral notch detectors.
Ann Biomed Eng. 2001 Oct;29(10):887-96. doi: 10.1114/1.1408924.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验