Suppr超能文献

矢状面听觉定位中双耳线索的频谱加权

Spectral Weighting of Monaural Cues for Auditory Localization in Sagittal Planes.

作者信息

Lladó Pedro, Majdak Piotr, Barumerli Roberto, Baumgartner Robert

机构信息

Acoustics Lab, Department of Information and Communication Engineering, Aalto University, Espoo, Finland.

Institute of Sound Recording, Department of Music and Media, University of Surrey, Guildford, UK.

出版信息

Trends Hear. 2025 Jan-Dec;29:23312165251317027. doi: 10.1177/23312165251317027. Epub 2025 Mar 18.

Abstract

Localization of sound sources in sagittal planes significantly relies on monaural spectral cues. These cues are primarily derived from the direction-specific filtering of the pinnae. The contribution of specific frequency regions to the cue evaluation has not been fully clarified. To this end, we analyzed how different spectral weighting schemes contribute to the explanatory power of a sagittal-plane localization model in response to wideband, flat-spectrum stimuli. Each weighting scheme emphasized the contribution of spectral cues within well-defined frequency bands, enabling us to assess their impact on the predictions of individual patterns of localization responses. By means of Bayesian model selection, we compared five model variants representing various spectral weights. Our results indicate a preference for the weighting schemes emphasizing the contribution of frequencies above 8 kHz, suggesting that, in the auditory system, spectral cue evaluation is upweighted in that frequency region. While various potential explanations are discussed, we conclude that special attention should be put on this high-frequency region in spatial-audio applications aiming at the best localization performance.

摘要

矢状面声源定位显著依赖单耳频谱线索。这些线索主要源自耳廓的方向特异性滤波。特定频率区域对线索评估的贡献尚未完全阐明。为此,我们分析了不同的频谱加权方案如何有助于矢状面定位模型对宽带、平坦频谱刺激做出响应时的解释力。每种加权方案都强调了明确频带内频谱线索的贡献,使我们能够评估它们对个体定位响应模式预测的影响。通过贝叶斯模型选择,我们比较了代表各种频谱权重的五个模型变体。我们的结果表明,更倾向于强调8 kHz以上频率贡献的加权方案,这表明在听觉系统中,该频率区域的频谱线索评估权重增加。虽然讨论了各种可能的解释,但我们得出结论,在旨在实现最佳定位性能的空间音频应用中,应特别关注这个高频区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9dd/11920987/8deee3b22105/10.1177_23312165251317027-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验