Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
Channels (Austin). 2009 Nov;3(6):448-61. doi: 10.4161/chan.3.6.10216. Epub 2009 Nov 30.
The somatodendritic subthreshold A-type K(+) current in neurons (I(SA)) depends on its kinetic and voltage-dependent properties to regulate membrane excitability, action potential repetitive firing, and signal integration. Key functional properties of the K(V)4 channel complex underlying I(SA) are determined by dipeptidyl peptidase-like proteins known as dipeptidyl peptidase 6 (DPP6) and dipeptidyl peptidase 10 (DPP10). Among the multiple known DPP10 isoforms with alternative N-terminal sequences, DPP10a confers exceptionally fast inactivation to K(V)4.2 channels. To elucidate the molecular basis of this fast inactivation, we investigated the structure-function relationship of the DPP10a N-terminal region and its interaction with the K(V)4.2 channel. Here, we show that DPP10a shares a conserved N-terminal sequence (MNQTA) with DPP6a (aka DPP6-E), which also induces fast inactivation. Deletion of the NQTA sequence in DPP10a eliminates this dramatic fast inactivation, and perfusion of MNQTA peptide to the cytoplasmic face of inside-out patches inhibits the K(V)4.2 current. DPP10a-induced fast inactivation exhibits competitive interactions with internally applied tetraethylammonium (TEA), and elevating the external K(+) concentration accelerates recovery from DPP10a-mediated fast inactivation. These results suggest that fast inactivation induced by DPP10a or DPP6a is mediated by a common N-terminal inactivation motif via a pore-blocking mechanism. This mechanism may offer an attractive target for novel pharmacological interventions directed at impairing I(SA) inactivation and reducing neuronal excitability.
神经元树突和胞体亚阈 A 型钾 (K+) 电流 (I(SA)) 通过其动力学和电压依赖性特性来调节膜兴奋性、动作电位重复发放和信号整合。I(SA) 所依赖的 K(V)4 通道复合物的关键功能特性取决于二肽基肽酶样蛋白,即二肽基肽酶 6 (DPP6) 和二肽基肽酶 10 (DPP10)。在具有替代 N 末端序列的多个已知 DPP10 同工型中,DPP10a 赋予 K(V)4.2 通道异常快速的失活。为了阐明这种快速失活的分子基础,我们研究了 DPP10a N 末端区域的结构-功能关系及其与 K(V)4.2 通道的相互作用。在这里,我们表明 DPP10a 与 DPP6a(又名 DPP6-E)共享一个保守的 N 末端序列 (MNQTA),该序列也会引起快速失活。DPP10a 中的 NQTA 序列缺失消除了这种急剧的快速失活,并且将 MNQTA 肽灌注到细胞质面的内面向外片会抑制 K(V)4.2 电流。DPP10a 诱导的快速失活与内部应用四乙铵 (TEA) 表现出竞争性相互作用,并且升高外部 K+浓度会加速从 DPP10a 介导的快速失活中恢复。这些结果表明,DPP10a 或 DPP6a 诱导的快速失活是通过一种共同的 N 末端失活基序通过孔阻塞机制介导的。这种机制可能为靶向损害 I(SA) 失活和降低神经元兴奋性的新型药理学干预提供有吸引力的目标。