Jerng Henry H, Pfaffinger Paul J
Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America.
PLoS One. 2014 Mar 27;9(3):e93315. doi: 10.1371/journal.pone.0093315. eCollection 2014.
Reactive oxygen species (ROS) regulate ion channels, modulate neuronal excitability, and contribute to the etiology of neurodegenerative disorders. ROS differentially suppress fast "ball-and-chain" N-type inactivation of cloned Kv1 and Kv3 potassium channels but not of Kv4 channels, likely due to a lack of reactive cysteines in Kv4 N-termini. Recently, we discovered that N-type inactivation of Kv4 channel complexes can be independently conferred by certain N-terminal variants of Kv4 auxiliary subunits (DPP6a, DPP10a). Here, we report that both DPP6a and DPP10a, like Kv subunits with redox-sensitive N-type inactivation, contain a highly conserved cysteine in their N-termini (Cys-13). To test if N-type inactivation mediated by DPP6a or DPP10a is redox sensitive, Xenopus oocyte recordings were performed to examine the effects of two common oxidants, tert-butyl hydroperoxide (tBHP) and diamide. Both oxidants markedly modulate DPP6a- or DPP10a-conferred N-type inactivation of Kv4 channels, slowing the overall inactivation and increasing the peak current. These functional effects are fully reversed by the reducing agent dithiothreitol (DTT) and appear to be due to a selective modulation of the N-type inactivation mediated by these auxiliary subunits. Mutation of DPP6a Cys-13 to serine eliminated the tBHP or diamide effects, confirming the importance of Cys-13 to the oxidative regulation. Biochemical studies designed to elucidate the underlying molecular mechanism show no evidence of protein-protein disulfide linkage formation following cysteine oxidation. Instead, using a biotinylated glutathione (BioGEE) reagent, we discovered that oxidation by tBHP or diamide leads to S-glutathionylation of Cys-13, suggesting that S-glutathionylation underlies the regulation of fast N-type inactivation by redox. In conclusion, our studies suggest that Kv4-based A-type current in neurons may show differential redox sensitivity depending on whether DPP6a or DPP10a is highly expressed, and that the S-glutathionylation mechanism may play a previously unappreciated role in mediating excitability changes and neuropathologies associated with ROS.
活性氧(ROS)调节离子通道,调节神经元兴奋性,并参与神经退行性疾病的病因。ROS 差异性地抑制克隆的 Kv1 和 Kv3 钾通道的快速“球链”N 型失活,但不抑制 Kv4 通道,这可能是由于 Kv4 氨基末端缺乏反应性半胱氨酸。最近,我们发现 Kv4 通道复合物的 N 型失活可由 Kv4 辅助亚基(DPP6a、DPP10a)的某些氨基末端变体独立赋予。在此,我们报告 DPP6a 和 DPP10a 与具有氧化还原敏感 N 型失活的 Kv 亚基一样,在其氨基末端含有一个高度保守的半胱氨酸(Cys-13)。为了测试由 DPP6a 或 DPP10a 介导的 N 型失活是否对氧化还原敏感,进行了非洲爪蟾卵母细胞记录,以检查两种常见氧化剂叔丁基过氧化氢(tBHP)和二酰胺的作用。两种氧化剂均显著调节由 DPP6a 或 DPP10a 赋予的 Kv4 通道的 N 型失活,减缓整体失活并增加峰值电流。这些功能效应可被还原剂二硫苏糖醇(DTT)完全逆转,并且似乎是由于对这些辅助亚基介导的 N 型失活的选择性调节。将 DPP6a 的 Cys-13 突变为丝氨酸消除了 tBHP 或二酰胺的作用,证实了 Cys-13 对氧化调节的重要性。旨在阐明潜在分子机制的生化研究未显示半胱氨酸氧化后蛋白质-蛋白质二硫键形成的证据。相反,使用生物素化谷胱甘肽(BioGEE)试剂,我们发现 tBHP 或二酰胺氧化导致 Cys-13 的 S-谷胱甘肽化,表明 S-谷胱甘肽化是氧化还原调节快速 N 型失活的基础。总之,我们的研究表明,神经元中基于 Kv4 的 A 型电流可能根据 DPP6a 或 DPP10a 是否高表达而表现出不同的氧化还原敏感性,并且 S-谷胱甘肽化机制可能在介导与 ROS 相关的兴奋性变化和神经病理学中发挥以前未被认识到的作用。