Department of Chemistry, Columbia University, New York, New York 10027, USA.
Acc Chem Res. 2010 Feb 16;43(2):335-45. doi: 10.1021/ar900223d.
One of the early triumphs of quantum mechanics was Heisenberg's prediction, based on the Pauli principle and wave function symmetry arguments, that the simplest molecule, H(2), should exist as two distinct species-allotropes of elemental hydrogen. One allotrope, termed para-H(2) (pH(2)), was predicted to be a lower energy species that could be visualized as rotating like a sphere and possessing antiparallel ( upward arrow downward arrow) nuclear spins; the other allotrope, termed ortho-H(2) (oH(2)), was predicted to be a higher energy state that could be visualized as rotating like a cartwheel and possessing parallel ( upward arrow upward arrow) nuclear spins. This remarkable prediction was confirmed by the early 1930s, and pH(2) and oH(2) were not only separated and characterized but were also found to be stable almost indefinitely in the absence of paramagnetic "spin catalysts", such as molecular oxygen, or traces of paramagnetic impurities, such as metal ions. The two allotropes of elemental hydrogen, pH(2) and oH(2), may be quantitatively incarcerated in C(60) to form endofullerene guest@host complexes, symbolized as pH(2)@C(60) and oH(2)@C(60), respectively. How does the subtle difference in nuclear spin manifest itself when hydrogen allotropes are incarcerated in a buckyball? Can the incarcerated "guests" communicate with the outside world and vice versa? Can a paramagnetic spin catalyst in the outside world cause the interconversion of the allotropes and thereby effect a chemical transformation inside a buckyball? How close are the measurable properties of H(2)@C(60) to those computed for the "quantum particle in a spherical box"? Are there any potential practical applications of this fascinating marriage of the simplest molecule, H(2), with one of the most beautiful of all molecules, C(60)? How can one address such questions theoretically and experimentally? A goal of our studies is to produce an understanding of how the H(2) guest molecules incarcerated in the host C(60) can "communicate" with the chemical world surrounding it. This world includes both the "walls" of the incarcerating host (the carbon atom "bricks" that compose the wall) and the "outside" world beyond the atoms of the host walls, namely, the solvent molecules and selected paramagnetic molecules added to the solvent that will have special spin interactions with the H(2) inside the complex. In this Account, we describe the temperature dependence of the equilibrium of the interconversion of oH(2)@C(60) and pH(2)@C(60) and show how elemental dioxygen, O(2), a ground-state triplet, is an excellent paramagnetic spin catalyst for this interconversion. We then describe an exploration of the spin spectroscopy and spin chemistry of H(2)@C(60). We find that H(2)@C(60) and its isotopic analogs, HD@C(60) and D(2)@C(60), provide a rich and fascinating platform on which to investigate spin spectroscopy and spin chemistry. Finally, we consider the potential extension of spin chemistry to another molecule with spin isomers, H(2)O, and the potential applications of the use of pH(2)@C(60) as a source of latent massive nuclear polarization.
一种早期的量子力学的胜利是海森堡基于泡利原理和波函数对称论证做出的预测,即最简单的分子 H(2) 应该以两种不同的物种——元素氢的同素异形体存在。一种同素异形体,称为正 H(2)(pH(2)),被预测为一种较低能量的物质,可以被想象为像球体一样旋转,并具有相反(向上箭头向下箭头)的核自旋;另一种同素异形体,称为仲 H(2)(oH(2)),被预测为一种较高能量的状态,可以被想象为像轮式手推车一样旋转,并具有平行(向上箭头向上箭头)的核自旋。这个显著的预测在 20 世纪 30 年代早期得到了证实,pH(2) 和 oH(2) 不仅被分离和表征,而且在没有顺磁“自旋催化剂”(如分子氧)或痕量顺磁杂质(如金属离子)的情况下几乎可以无限期地稳定存在。元素氢的两种同素异形体 pH(2) 和 oH(2) 可以定量地被囚禁在 C(60)中,形成包合物客体@主体复合物,分别表示为 pH(2)@C(60)和 oH(2)@C(60)。当氢同素异形体被囚禁在富勒烯中时,核自旋的细微差异是如何表现出来的?被囚禁的“客体”能否与外界进行交流,反之亦然?外界的顺磁自旋催化剂能否引起同素异形体的相互转化,从而在富勒烯内部实现化学转化?H(2)@C(60) 的可测量性质与“球形盒中的量子粒子”的计算值有多接近?这种最简单的分子 H(2) 与最美丽的分子之一 C(60) 的迷人结合有哪些潜在的实际应用?如何从理论和实验上解决这些问题?我们研究的目标之一是了解被囚禁在主体 C(60)中的 H(2)客体分子如何与周围的化学世界“交流”。这个世界包括囚禁主体的“墙壁”(构成墙壁的碳原子“砖块”)和主体壁原子之外的“外部”世界,即添加到溶剂中的溶剂分子和选定的顺磁分子,它们将与复合物内部的 H(2) 产生特殊的自旋相互作用。在本说明中,我们描述了 oH(2)@C(60) 和 pH(2)@C(60) 相互转化的平衡随温度的变化,并展示了如何基态三重态分子氧 O(2) 是这种相互转化的极好的顺磁自旋催化剂。然后,我们描述了对 H(2)@C(60) 的自旋光谱学和自旋化学的探索。我们发现 H(2)@C(60)及其同位素类似物 HD@C(60)和 D(2)@C(60)为研究自旋光谱学和自旋化学提供了一个丰富而迷人的平台。最后,我们考虑将自旋化学扩展到另一个具有自旋异构体的分子 H(2)O,以及将 pH(2)@C(60)用作潜在的大量核极化潜伏源的潜在应用。