Suppr超能文献

自旋超极化在现代磁共振中的应用。

Spin Hyperpolarization in Modern Magnetic Resonance.

机构信息

Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028Barcelona, Spain.

Johannes Gutenberg-Universität Mainz, 55128Mainz, Germany.

出版信息

Chem Rev. 2023 Feb 22;123(4):1417-1551. doi: 10.1021/acs.chemrev.2c00534. Epub 2023 Jan 26.

Abstract

Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.

摘要

磁共振技术在广泛的科学领域和各种实际应用中得到了成功应用,其中医学磁共振成像是最为人熟知的例子。目前,由于自旋超极化领域的快速发展,基础和应用磁共振都得到了重大推动。超极化技术能够将磁共振信号强度提高几个数量级,从而在很大程度上克服其灵敏度相对较低的主要缺点。这为磁共振的现有应用提供了新的动力,并为令人兴奋的新可能性开辟了道路。在这篇综述中,我们提供了一个统一的图像,其中包含了许多属于“超极化”这一术语的方法和技术,但目前很少被视为同一领域的组成部分。具体来说,在深入研究各个技术之前,我们提供了对自旋超极化基本原理的详细分析。我们试图揭示和分类超极化的起源,确定其来源和使极化从源到目标自旋流动的特定机制。然后,我们对个别超极化技术进行更详细的分析:它们的工作机制、基本和技术要求、典型应用、未解决的问题以及可能的未来方向。我们看到自旋超极化领域的活动不断增加,我们预计随着新的和改进的超极化技术的实施,该领域将蓬勃发展。一些关键的发展领域是延长极化寿命、使超极化技术更普遍地适用于化学/生物系统、降低技术和设备要求以及创建更有效的激发和检测方案。我们希望这篇综述能够促进超极化这一广泛主题的各个子领域之间的知识共享,帮助克服磁共振中现有的挑战并实现新的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/9951229/cc167722491a/cr2c00534_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验