Suppr超能文献

蛋白质半胱氨酸修饰:(2)反应特异性及药物化学和蛋白质工程主题。

Protein cysteine modifications: (2) reactivity specificity and topics of medicinal chemistry and protein engineering.

机构信息

Department of Environmental Medicine, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-8602, Japan.

出版信息

Curr Med Chem. 2009;16(34):4490-501. doi: 10.2174/092986709789760643.

Abstract

Cysteine (cysteinyl residue) modifications in proteins result in diversity in protein functions. The reaction specificity of a protein with a modified cysteine residue is determined by the overall conditions of the protein, including the spatial position of the cysteine residue, electrostatic interactions between cysteine residue and other charged residues, spatial interactions between the cysteine residue and a chemical compound, electrophilicity of the chemical compound, and the pH of the solution. In cysteine-dependant enzymes, each specific type of cysteine modification characterizes the catalytic mechanism of the enzyme. Recently, the catalytic mechanisms of peroxiredoxins and cysteine proteases, which contain a cysteine residue(s) in their catalytic sites, have been elucidated. In the catalytic process of peroxiredoxins, a sulfenyl intermediate is formed by oxidation of the catalytic cysteine residue. On the other hand, in cysteine proteases, the catalytic cysteine residue reacts with the carboxyl carbon of a peptide substrate to form an intermediate complex via S-alkylation. In this review, we introduce the most current information on the applications of cysteine thiol chemistry for in vitro glycoprotein synthesis. Recently, a glycoprotein (monocyte chemotactic protein-3), containing an intact human complex-type sialyloligosaccharide has been chemically synthesized. The procedure used for this could have applications in the development of new protein-based drugs, including antineoplastic drugs and antibiotics. It can also potentially be applied for improving the half-life and reducing the toxicity of these drugs, and for preventing the development of multidrug resistance.

摘要

半胱氨酸(半胱氨酸残基)修饰蛋白质会导致蛋白质功能多样化。具有修饰半胱氨酸残基的蛋白质的反应特异性取决于蛋白质的整体条件,包括半胱氨酸残基的空间位置、半胱氨酸残基与其他带电残基之间的静电相互作用、半胱氨酸残基与化学化合物之间的空间相互作用、化学化合物的亲电性以及溶液的 pH 值。在半胱氨酸依赖性酶中,每种特定类型的半胱氨酸修饰都表征了酶的催化机制。最近,过氧化物酶和半胱氨酸蛋白酶的催化机制已经阐明,它们的催化位点都含有半胱氨酸残基。在过氧化物酶的催化过程中,催化半胱氨酸残基的氧化形成亚磺酰基中间体。另一方面,在半胱氨酸蛋白酶中,催化半胱氨酸残基与肽底物的羧基碳反应,通过 S-烷基化形成中间复合物。在这篇综述中,我们介绍了半胱氨酸巯基化学在体外糖蛋白合成中的最新应用信息。最近,一种含有完整人复杂型唾液酸寡糖的糖蛋白(单核细胞趋化蛋白-3)已通过化学方法合成。用于该方法的程序可应用于新型蛋白质药物的开发,包括抗肿瘤药物和抗生素。它还可能潜在地应用于提高这些药物的半衰期和降低其毒性,并防止多药耐药性的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验