Suppr超能文献

基于人工神经网络的近红外光谱法对家禽粪便中营养成分的定量测定。

Quantitative determination of nutrient content in poultry manure by near infrared spectroscopy based on artificial neural networks.

机构信息

China Agricultural University (East Campus), PO Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, P. R. China.

出版信息

Poult Sci. 2009 Dec;88(12):2496-503. doi: 10.3382/ps.2009-00210.

Abstract

Excessively applied manure contains a considerable amount of nutrient content such as nitrogen and phosphorus that could potentially pollute groundwater and soil. The present paper evaluated the use of nonlinear regression methods, such as artificial neural networks (ANN), for developing near infrared reflectance spectroscopy calibration models to predict nutrient content in poultry manure. Four representative nutrient ingredients (ammonia nitrogen, AN; total potassium, TK; total nitrogen, TN; total phosphorus, TP) in poultry manure were selected for evaluating ANN feasibility using 91 diverse samples in which three-fourths of the samples were used as a training set and one-fourth as a validation set. The performance of the ANN models was compared with the partial least squares (PLS) models. We found that the ANN models for all 4 nutrient contents consistently gave better predictions than PLS models. The ratios of prediction to deviation of 2.62 (AN), 1.51 (TK), 2.75 (TN), and 2.01 (TP) with the PLS models were improved to 3.02 (AN), 1.74 (TK), 3.41 (TN), and 2.71 (TP) with the corresponding ANN models. These findings demonstrated that the near infrared reflectance spectroscopy model based on the ANN method may be an appropriate tool to predict nutrient content in poultry manure.

摘要

过量施用的肥料含有相当数量的营养物质,如氮和磷,这些物质有可能污染地下水和土壤。本文评估了使用非线性回归方法(如人工神经网络(ANN))来开发近红外反射光谱校准模型,以预测家禽粪便中的营养成分。选择了家禽粪便中的四种代表性营养成分(氨氮、总钾、总氮和总磷),使用 91 个不同的样本评估 ANN 的可行性,其中四分之三的样本用作训练集,四分之一用作验证集。ANN 模型的性能与偏最小二乘法(PLS)模型进行了比较。我们发现,对于所有 4 种营养成分,ANN 模型的预测结果均优于 PLS 模型。PLS 模型的预测偏差比分别为 2.62(AN)、1.51(TK)、2.75(TN)和 2.01(TP),而相应的 ANN 模型的预测偏差比分别提高到 3.02(AN)、1.74(TK)、3.41(TN)和 2.71(TP)。这些结果表明,基于 ANN 方法的近红外反射光谱模型可能是预测家禽粪便中营养成分的合适工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验