Suppr超能文献

人工神经网络和多元线性回归在不同条件下蚯蚓堆肥中养分回收建模中的应用。

Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions.

机构信息

Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.

Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran.

出版信息

Bioresour Technol. 2020 May;303:122926. doi: 10.1016/j.biortech.2020.122926. Epub 2020 Jan 29.

Abstract

Vermicomposting is one of the best technologies for nutrient recovery from solid waste. This study aims to assess the efficiency of Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) models in predicting nutrient recovery from solid waste under different vermicompost treatments. Seven chemical and biological indices were studied as input variables to predict total nitrogen (TN) and total phosphorus (TP) recovery. The developed ANN and MLR models were compared by statistical analysis including R-squared (R), Adjusted-R, Root Mean Square Error and Absolute Average Deviation. The results showed that vermicomposting increased TN and TP proportions in final products by 1.5 and 16 times. The ANN models provided better prediction for TN and TP with R of 0.9983 and 0.9991 respectively, compared with MLR models with R of 0.834 and 0.729. TN and C/N ratio were key factors for TP and TN prediction by ANN with percentages of 17.76 and 18.33.

摘要

蚯蚓堆肥是从固体废物中回收营养物质的最佳技术之一。本研究旨在评估人工神经网络 (ANN) 和多元线性回归 (MLR) 模型在不同蚯蚓堆肥处理下预测固体废物中营养物质回收的效率。研究了七种化学和生物学指标作为输入变量,以预测总氮 (TN) 和总磷 (TP) 的回收。通过统计分析,包括 R 平方 (R)、调整 R、均方根误差和绝对平均偏差,对开发的 ANN 和 MLR 模型进行了比较。结果表明,蚯蚓堆肥使最终产品中的 TN 和 TP 比例分别增加了 1.5 倍和 16 倍。ANN 模型对 TN 和 TP 的预测效果更好,R 分别为 0.9983 和 0.9991,而 MLR 模型的 R 分别为 0.834 和 0.729。TN 和 C/N 比是 ANN 预测 TP 和 TN 的关键因素,占比分别为 17.76%和 18.33%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验