Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
Phytochem Anal. 2010 Jan-Feb;21(1):48-60. doi: 10.1002/pca.1181.
Plant metabolomics experiments yield large amounts of data, too much to be interpretable by eye. Multivariate data analyses are therefore essential to extract and visualise the information of interest.
Because multivariate statistical methods may be remote from the expertise of many scientists working in the metabolomics field, this overview provides a step-by-step description of a multivariate data analysis, starting from the experiment and ending with the figures appearing in scientific journals.
We developed a thought experiment that explores the relationship between the differences in nutrient levels and three plant developmental descriptors through photography of the greenhouse they grow in. Through this, multivariate data analysis, data preprocessing and model validation are illustrated. Finally some of the presented methods are illustrated by the analysis of a plant metabolomics dataset.
This paper will familiarize non-specialised researchers with the main concepts in multivariate data analysis and allow them to develop and evaluate metabolomic data analyses more critically.
植物代谢组学实验产生了大量的数据,仅凭肉眼无法解释。因此,多元数据分析对于提取和可视化感兴趣的信息至关重要。
由于多元统计方法可能远离许多从事代谢组学研究的科学家的专业知识,因此本文提供了从实验到科学期刊中出现的图形的逐步描述,对多元数据分析进行概述。
我们通过拍摄它们生长的温室的照片,开发了一个思维实验,探索营养水平差异与三个植物发育描述符之间的关系。通过这种方式,说明了多元数据分析、数据预处理和模型验证。最后,通过对植物代谢组学数据集的分析说明了一些提出的方法。
本文将使非专业研究人员熟悉多元数据分析的主要概念,并使他们能够更批判性地开发和评估代谢组学数据分析。