Sonday Benjamin E, Haataja Mikko, Kevrekidis Ioannis G
Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031102. doi: 10.1103/PhysRevE.80.031102. Epub 2009 Sep 3.
Developing effective descriptions of the microscopic dynamics of many physical phenomena can both dramatically enhance their computational exploration and lead to a more fundamental understanding of the underlying physics. Previously, an effective description of a driven interface in the presence of mobile impurities, based on an Ising variant model and a single empirical coarse variable, was partially successful [M. Haataja, Phys. Rev. Lett. 92, 160603 (2004)]; yet it underlined the necessity of selecting additional coarse variables in certain parameter regimes. In this paper we use a data mining approach to help identify the coarse variables required. We discuss the implementation of this diffusion map approach, the selection of a similarity measure between system snapshots required in the approach, and the correspondence between empirically selected and automatically detected coarse variables. We conclude by illustrating the use of the diffusion map variables in assisting the atomistic simulations and we discuss the translation of information between fine and coarse descriptions using lifting and restriction operators.
对许多物理现象的微观动力学进行有效的描述,既能显著增强对其进行的计算探索,又能使人们对潜在物理原理有更深入的理解。此前,基于伊辛变体模型和单个经验粗变量,对存在移动杂质时的驱动界面进行的有效描述取得了部分成功[M. 哈塔亚,《物理评论快报》92, 160603 (2004)];但它也凸显了在某些参数区域选择额外粗变量的必要性。在本文中,我们使用数据挖掘方法来帮助确定所需的粗变量。我们讨论了这种扩散映射方法的实现、该方法中所需系统快照之间相似性度量的选择,以及经验选择的粗变量与自动检测的粗变量之间的对应关系。我们通过说明扩散映射变量在辅助原子模拟中的应用来得出结论,并使用提升和限制算子讨论精细描述与粗描述之间信息转换的问题。