McCarty J, Clark A J, Copperman J, Guenza M G
Department of Chemistry and Biochemistry, and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA.
J Chem Phys. 2014 May 28;140(20):204913. doi: 10.1063/1.4875923.
Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k → 0 limit, c0. A numerical solution to the PRISM integral equations is used to determine c0, by adjusting the value of the effective hard sphere diameter, dHS, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.
跨多个长度尺度的粗粒化模型的结构和热力学一致性对于使用中尺度描述的多尺度建模和分子动力学模拟的预测作用至关重要。我们的方法是基于积分方程理论的粗粒化模型,它可以在不同化学细节水平上表示聚合物链。该模型是解析性的,取决于所研究系统的分子和热力学参数,以及k→0极限下的直接相关函数c0。通过调整有效硬球直径dHS的值以使其与预测的状态方程一致,使用PRISM积分方程的数值解来确定c0。这个单一量参数化了粗粒化势,该势用于进行中尺度模拟,并直接与同一系统的原子级模拟进行比较。我们通过使用联合原子和粗粒化描述来比较结构相关性、等温压缩性、状态方程、亥姆霍兹自由能和吉布斯自由能以及势能和熵,来测试我们的粗粒化形式。我们发现热力学性质的解析形式与分子动力学模拟结果之间存在定量一致性,与所选的表示水平无关。在中尺度描述中,软粒子相互作用的势能在粗粒化坐标中变成自由能,它在所有描述水平上都保留了来自理想气体的过量自由能。联合原子描述和中尺度描述之间的结构一致性意味着描述之间的相对熵在没有任何变分优化参数的情况下已被最小化。该方法具有通用性,适用于不同热力学条件下的任何聚合物系统。