Huang Xiaoqing, Liao Xuhong, Cui Xiaohua, Zhang Hong, Hu Gang
Department of Physics, Beijing Normal University, Beijing 100875, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 2):036211. doi: 10.1103/PhysRevE.80.036211. Epub 2009 Sep 22.
Recently, waves propagating with negative phase velocity [simply called antiwaves (AWs)] have attracted great attention in the area of nonlinear oscillatory systems. In the present work we investigate the parameter conditions for AWs. So far AWs have been revealed from systems slightly beyond Hopf bifurcation or some other instabilities, and from some wave sources with certain restricted frequencies. Here we study general oscillatory media (including generalized complex Ginzburg-Landau systems and Brusselator model) and specify the parameter conditions of AWs by certain characteristic behaviors of the dispersion relation of the systems. Moreover, we predict that AWs and NWs (normal waves with positive phase velocity) can be realized at a same intrinsic parameter values but different pacing frequencies in parameter regions where the dispersion relation exhibits a maximum or minimum. All numerical simulations are perfectly consistent with these theoretical predictions where the oscillatory systems are driven by external periodic pacings with 1:1 frequency locking responses.
最近,以负相速度传播的波(简称为反波(AWs))在非线性振荡系统领域引起了极大关注。在本工作中,我们研究了反波的参数条件。到目前为止,反波已从略超出霍普夫分岔或其他一些不稳定性的系统中,以及从某些具有特定受限频率的波源中被揭示出来。在此,我们研究一般的振荡介质(包括广义复金兹堡 - 朗道系统和布鲁塞尔振子模型),并通过系统色散关系的某些特征行为来确定反波的参数条件。此外,我们预测在色散关系呈现最大值或最小值的参数区域中,反波和正波(具有正相速度的正常波,NWs)可以在相同的固有参数值但不同的起搏频率下实现。所有数值模拟都与这些理论预测完美一致,其中振荡系统由具有1:1频率锁定响应的外部周期性起搏驱动。