Weicker Lionel, Erneux Thomas, D'Huys Otti, Danckaert Jan, Jacquot Maxime, Chembo Yanne, Larger Laurent
Université Libre de Bruxelles, Optique Nonlinéaire Théorique, Campus Plaine, C.P. 231, 1050 Bruxelles, Belgium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):055201. doi: 10.1103/PhysRevE.86.055201. Epub 2012 Nov 29.
Time-delayed systems are known to exhibit symmetric square waves oscillating with a period close to twice the delay. Here, we show that strongly asymmetric square waves of a period close to one delay are possible. The plateau lengths can be tuned by changing a control parameter. The problem is investigated experimentally and numerically using a simple bandpass optoelectronic delay oscillator modeled by nonlinear delay integrodifferential equations. An asymptotic approximation of the square-wave periodic solution valid in the large delay limit allows an analytical description of its main properties (extrema and square pulse durations). A detailed numerical study of the bifurcation diagram indicates that the asymmetric square waves emerge from a Hopf bifurcation.
众所周知,时滞系统会呈现出周期接近延迟两倍的对称方波振荡。在此,我们表明周期接近一个延迟的强非对称方波是可能的。通过改变一个控制参数可以调整平台长度。使用由非线性延迟积分微分方程建模的简单带通光电延迟振荡器,对该问题进行了实验和数值研究。在大延迟极限下有效的方波周期解的渐近近似允许对其主要特性(极值和方脉冲持续时间)进行解析描述。对方岔图的详细数值研究表明,非对称方波从霍普夫分岔中出现。