Suppr超能文献

人工神经网络模型用于决定正畸治疗前是否需要拔牙。

Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment.

机构信息

Department of Orthodontics, Stomatology Hospital Affiliated with Medical School, Nanjing University, Nanjing, PR China.

出版信息

Angle Orthod. 2010 Mar;80(2):262-6. doi: 10.2319/111608-588.1.

Abstract

OBJECTIVE

To construct a decision-making expert system (ES) for the orthodontic treatment of patients between 11 and 15 years old to determine whether extraction is needed by using artificial neural networks (ANN). Specifically, we will uncover the factors that affect this decision-making process.

METHODS

A total of 200 subjects were chosen; among them, 120 were accepted for extraction treatments, and 80 were chosen for nonextraction treatments. For each case, 23 indices were selected. A 23-13-1 Back Propagation (BP) ANN model was constructed, and the data for 180 patients were aggregated to constitute the training set. Data for the other 20 patients were used as the testing set.

RESULTS

When data from the 180 patients that had been trained were tested, the result was 100%, as expected. The untrained data from 20 patients in the testing set were 80% correct (ie, 16 cases were forecasted successfully). In the meantime, the relative contributions of the 23 input indices to the final output index (extraction/nonextraction) were calculated. "Anterior teeth uncovered by incompetent lips" and "IMPA (L1-MP)" were the two indices that gave the biggest contributions sequentially; the index of FMA (FH-MP) gave the smallest contribution.

CONCLUSIONS

(1) The constructed artificial neural network in this study was effective, with 80% accuracy, in determining whether extraction or nonextraction treatment was best for malocclusion patients between 11 and 15 years old; (2) when the clinician is predicting whether an orthodontic treatment requires extraction, the indices "anterior teeth uncovered by incompetent lips" and "IMPA (L1-MP)" should be taken into consideration first.

摘要

目的

使用人工神经网络(ANN)为 11 至 15 岁的正畸患者构建决策专家系统(ES),以确定是否需要拔牙。具体来说,我们将揭示影响这一决策过程的因素。

方法

共选择了 200 名受试者;其中,120 名接受拔牙治疗,80 名选择不拔牙治疗。对每个病例,选择了 23 个指标。构建了一个 23-13-1 反向传播(BP)人工神经网络模型,将 180 名患者的数据汇总构成训练集。将其余 20 名患者的数据用作测试集。

结果

当对经过训练的 180 名患者的数据进行测试时,结果为 100%,符合预期。在测试集中的 20 名未受过训练的患者中,有 80%的结果是正确的(即,16 例预测成功)。同时,计算了 23 个输入指标对最终输出指标(拔牙/不拔牙)的相对贡献。“不被无能嘴唇覆盖的前牙”和“IMPA(L1-MP)”是依次贡献最大的两个指标;FMA(FH-MP)指数的贡献最小。

结论

(1)本研究构建的人工神经网络在确定 11 至 15 岁错牙合患者拔牙或不拔牙治疗的最佳方案方面,具有 80%的准确率;(2)当临床医生预测正畸治疗是否需要拔牙时,应首先考虑“不被无能嘴唇覆盖的前牙”和“IMPA(L1-MP)”这两个指标。

相似文献

4
Mandibular incisor extraction therapy.下颌切牙拔除疗法
Am J Orthod Dentofacial Orthop. 1994 Feb;105(2):107-16. doi: 10.1016/S0889-5406(94)70106-7.
5
The decision to extract: Part 1--Interclinician agreement.拔牙决策:第一部分——临床医生之间的一致性
Am J Orthod Dentofacial Orthop. 1996 Mar;109(3):297-309. doi: 10.1016/s0889-5406(96)70153-1.
10
Long-term profile changes in extraction and nonextraction patients.拔牙与非拔牙患者的长期轮廓变化。
Am J Orthod Dentofacial Orthop. 2005 Oct;128(4):450-7. doi: 10.1016/j.ajodo.2004.04.034.

引用本文的文献

5
Artificial intelligence in dentistry-A review.牙科领域的人工智能——综述
Front Dent Med. 2023 Feb 20;4:1085251. doi: 10.3389/fdmed.2023.1085251. eCollection 2023.

本文引用的文献

2
A new supervised learning algorithm for multilayered and interconnected neural networks.
IEEE Trans Neural Netw. 2000;11(1):36-46. doi: 10.1109/72.822508.
5
Prognostic factors in clinical decision making: the future.临床决策中的预后因素:未来。
Cancer. 2001 Apr 15;91(8 Suppl):1688-95. doi: 10.1002/1097-0142(20010415)91:8+<1688::aid-cncr1184>3.0.co;2-7.
6
Neural network and regression predictions of 5-year survival after colon carcinoma treatment.结肠癌治疗后5年生存率的神经网络和回归预测。
Cancer. 2001 Apr 15;91(8 Suppl):1673-8. doi: 10.1002/1097-0142(20010415)91:8+<1673::aid-cncr1182>3.0.co;2-t.
7
Evaluation of artificial neural networks for the prediction of pathologic stage in prostate carcinoma.
Cancer. 2001 Apr 15;91(8 Suppl):1661-6. doi: 10.1002/1097-0142(20010415)91:8+<1661::aid-cncr1180>3.3.co;2-x.
8
Artificial neural networks for prostate carcinoma risk assessment. An overview.用于前列腺癌风险评估的人工神经网络。综述。
Cancer. 2001 Apr 15;91(8 Suppl):1647-52. doi: 10.1002/1097-0142(20010415)91:8+<1647::aid-cncr1178>3.0.co;2-3.
10
Artificial neural networks: opening the black box.人工神经网络:打开黑箱
Cancer. 2001 Apr 15;91(8 Suppl):1615-35. doi: 10.1002/1097-0142(20010415)91:8+<1615::aid-cncr1175>3.0.co;2-l.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验