Suppr超能文献

正链单链 RNA 病毒中突变频率与复制策略的关系。

The relationship between mutation frequency and replication strategy in positive-sense single-stranded RNA viruses.

机构信息

Institut National de la Recherche Agronomique, UMR BGPI, Cirad TA A-54/K, Campus de Baillarguet, 34398 Montpellier cedex 5, France.

出版信息

Proc Biol Sci. 2010 Mar 7;277(1682):809-17. doi: 10.1098/rspb.2009.1247. Epub 2009 Nov 11.

Abstract

For positive-sense single-stranded RNA virus genomes, there is a trade-off between the mutually exclusive tasks of transcription, translation and encapsidation. The replication strategy that maximizes the intracellular growth rate of the virus requires iterative genome transcription from positive to negative, and back to positive sense. However, RNA viruses experience high mutation rates, and the proportion of genomes with lethal mutations increases with the number of replication cycles. Thus, intracellular mutant frequency will depend on the replication strategy. Introducing apparently realistic mutation rates into a model of viral replication demonstrates that strategies that maximize viral growth rate could result in an average of 26 mutations per genome by the time plausible numbers of positive strands have been generated, and that virus viability could be as low as 0.1 per cent. At high mutation rates or when a high proportion of mutations are deleterious, the optimal strategy shifts towards synthesizing more negative strands per positive strand, and in extremis towards a 'stamping-machine' replication mode where all the encapsidated genomes come from only two transcriptional steps. We conclude that if viral mutation rates are as high as current estimates suggest, either mutation frequency must be considerably higher than generally anticipated and the proportion of viable viruses produced extremely small, or replication strategies cannot be optimized to maximize viral growth rate. Mechanistic models linking mutation frequency to replication mechanisms coupled with data generated through new deep-sequencing technologies could play an important role in improving the estimates of viral mutation rate.

摘要

对于正链单链 RNA 病毒基因组而言,转录、翻译和包装这三个相互排斥的任务之间存在权衡。使病毒在细胞内的生长速率最大化的复制策略需要从正链到负链,再回到正链进行迭代基因组转录。然而,RNA 病毒的突变率很高,具有致死突变的基因组比例随着复制循环次数的增加而增加。因此,细胞内的突变频率将取决于复制策略。将明显现实的突变率引入病毒复制模型表明,当生成合理数量的正链时,最大限度地提高病毒生长速率的策略可能导致每个基因组平均发生 26 个突变,并且病毒的存活率可能低至 0.1%。在高突变率或多数突变有害的情况下,最佳策略会朝着每产生一个正链合成更多负链的方向转变,而在极端情况下,会朝着“盖章机”复制模式转变,即所有包装的基因组仅来自两个转录步骤。我们得出的结论是,如果病毒的突变率如当前估计的那样高,那么要么突变频率必须比通常预期的高得多,要么产生的有活力病毒的比例极低,要么复制策略不能优化以最大限度地提高病毒生长速率。将突变频率与复制机制联系起来的机制模型,结合通过新的深度测序技术生成的数据,可能在提高病毒突变率的估计方面发挥重要作用。

相似文献

1
The relationship between mutation frequency and replication strategy in positive-sense single-stranded RNA viruses.
Proc Biol Sci. 2010 Mar 7;277(1682):809-17. doi: 10.1098/rspb.2009.1247. Epub 2009 Nov 11.
2
How does the genome structure and lifestyle of a virus affect its population variation?
Curr Opin Virol. 2014 Dec;9:39-44. doi: 10.1016/j.coviro.2014.09.004. Epub 2014 Sep 20.
3
Replication mode and landscape topology differentially affect RNA virus mutational load and robustness.
J Virol. 2009 Dec;83(23):12579-89. doi: 10.1128/JVI.00767-09. Epub 2009 Sep 23.
4
Viral replication modes in single-peak fitness landscapes: A dynamical systems analysis.
J Theor Biol. 2019 Jan 7;460:170-183. doi: 10.1016/j.jtbi.2018.10.007. Epub 2018 Oct 6.
5
Wrapping things up about virus RNA replication.
Traffic. 2005 Nov;6(11):967-77. doi: 10.1111/j.1600-0854.2005.00339.x.
6
Composition bias and genome polarity of RNA viruses.
Virus Res. 2005 Apr;109(1):33-7. doi: 10.1016/j.virusres.2004.10.004. Epub 2004 Nov 18.
7
Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts.
Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):1863-7. doi: 10.1073/pnas.0307131101. Epub 2004 Feb 9.
9
Dynamics of alternative modes of RNA replication for positive-sense RNA viruses.
J R Soc Interface. 2012 Apr 7;9(69):768-76. doi: 10.1098/rsif.2011.0471. Epub 2011 Sep 7.
10
Emergency Services of Viral RNAs: Repair and Remodeling.
Microbiol Mol Biol Rev. 2018 Mar 14;82(2). doi: 10.1128/MMBR.00067-17. Print 2018 Jun.

引用本文的文献

1
Key Aspects of Coronavirus Avian Infectious Bronchitis Virus.
Pathogens. 2023 May 11;12(5):698. doi: 10.3390/pathogens12050698.
2
Synthesis of Hetaryl-Substituted Asymmetric Porphyrins and Their Affinity to SARS-CoV-2 Helicase.
Russ J Gen Chem. 2021;91(6):1039-1049. doi: 10.1134/S1070363221060098. Epub 2021 Jul 30.
3
The evolutionary dynamics of viruses: virion release strategies, time delays and fitness minima.
Virus Evol. 2021 Apr 27;7(1):veab039. doi: 10.1093/ve/veab039. eCollection 2021 Jan.
4
RNA-dependent RNA polymerase (RdRp) inhibitors: The current landscape and repurposing for the COVID-19 pandemic.
Eur J Med Chem. 2021 Mar 5;213:113201. doi: 10.1016/j.ejmech.2021.113201. Epub 2021 Jan 21.
6
The virome of , an invasive pest of soft fruit.
Virus Evol. 2018 Mar 29;4(1):vey009. doi: 10.1093/ve/vey009. eCollection 2018 Jan.
7
Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus.
Infect Genet Evol. 2016 Oct;44:286-292. doi: 10.1016/j.meegid.2016.07.010. Epub 2016 Jul 12.
8
Mechanisms of viral mutation.
Cell Mol Life Sci. 2016 Dec;73(23):4433-4448. doi: 10.1007/s00018-016-2299-6. Epub 2016 Jul 8.
9
The impact of within-herd genetic variation upon inferred transmission trees for foot-and-mouth disease virus.
Infect Genet Evol. 2015 Jun;32:440-8. doi: 10.1016/j.meegid.2015.03.032. Epub 2015 Apr 8.

本文引用的文献

1
Replication mode and landscape topology differentially affect RNA virus mutational load and robustness.
J Virol. 2009 Dec;83(23):12579-89. doi: 10.1128/JVI.00767-09. Epub 2009 Sep 23.
3
Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future.
J Evol Biol. 2009 Feb;22(2):245-59. doi: 10.1111/j.1420-9101.2008.01658.x.
4
Rates of evolutionary change in viruses: patterns and determinants.
Nat Rev Genet. 2008 Apr;9(4):267-76. doi: 10.1038/nrg2323. Epub 2008 Mar 4.
5
Estimation of the number of virus particles transmitted by an insect vector.
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17891-6. doi: 10.1073/pnas.0702739104. Epub 2007 Oct 30.
6
Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco Etch virus.
J Virol. 2007 Dec;81(23):12979-84. doi: 10.1128/JVI.00524-07. Epub 2007 Sep 26.
7
Too many mutants with multiple mutations.
Crit Rev Biochem Mol Biol. 2007 Jul-Aug;42(4):247-58. doi: 10.1080/10409230701495631.
8
How generation intervals shape the relationship between growth rates and reproductive numbers.
Proc Biol Sci. 2007 Feb 22;274(1609):599-604. doi: 10.1098/rspb.2006.3754.
9
The cost of replication fidelity in human immunodeficiency virus type 1.
Proc Biol Sci. 2007 Jan 22;274(1607):225-30. doi: 10.1098/rspb.2006.3732.
10
The cost of replication fidelity in an RNA virus.
Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10233-7. doi: 10.1073/pnas.0501062102. Epub 2005 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验