Department of Chemistry, University of California, Berkeley, California 94720, USA.
Nature. 2009 Nov 12;462(7270):200-4. doi: 10.1038/nature08527.
Tracing the transient atomic motions that lie at the heart of chemical reactions requires high-resolution multidimensional structural information on the timescale of molecular vibrations, which commonly range from 10 fs to 1 ps. For simple chemical systems, it has been possible to map out in considerable detail the reactive potential-energy surfaces describing atomic motions and resultant reaction dynamics, but such studies remain challenging for complex chemical and biological transformations. A case in point is the green fluorescent protein (GFP) from the jellyfish Aequorea victoria, which is a widely used gene expression marker owing to its efficient bioluminescence. This feature is known to arise from excited-state proton transfer (ESPT), yet the atomistic details of the process are still not fully understood. Here we show that femtosecond stimulated Raman spectroscopy provides sufficiently detailed and time-resolved vibrational spectra of the electronically excited chromophore of GFP to reveal skeletal motions involved in the proton transfer that produces the fluorescent form of the protein. In particular, we observe that the frequencies and intensities of two marker bands, the C-O and C = N stretching modes at opposite ends of the conjugated chromophore, oscillate out of phase with a period of 280 fs; we attribute these oscillations to impulsively excited low-frequency phenoxyl-ring motions, which optimize the geometry of the chromophore for ESPT. Our findings illustrate that femtosecond simulated Raman spectroscopy is a powerful approach to revealing the real-time nuclear dynamics that make up a multidimensional polyatomic reaction coordinate.
追踪位于化学反应核心的瞬态原子运动需要在分子振动的时间尺度上具有高分辨率的多维结构信息,通常范围从 10 fs 到 1 ps。对于简单的化学系统,已经有可能详细绘制描述原子运动和反应动力学的反应势能面,但对于复杂的化学和生物转化,这种研究仍然具有挑战性。一个典型的例子是来自水母维多利亚多管发光水母的绿色荧光蛋白 (GFP),由于其高效的生物发光,它是一种广泛使用的基因表达标记。人们知道这种特性源于激发态质子转移 (ESPT),但该过程的原子细节仍未完全理解。在这里,我们表明飞秒受激拉曼光谱法为 GFP 的电子激发生色团提供了足够详细和时间分辨的振动光谱,以揭示产生蛋白质荧光形式的质子转移过程中的骨架运动。特别是,我们观察到两个标记带的频率和强度,即共轭生色团两端的 C-O 和 C = N 伸缩模式,以 280 fs 的周期反相振荡;我们将这些振荡归因于受激的低频率苯氧环运动,这优化了生色团的 ESPT 几何形状。我们的发现表明,飞秒模拟拉曼光谱是揭示组成多维多原子反应坐标的实时核动力学的有力方法。