Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Str 6.131, PO Box 85500, 3508 GA, Utrecht, the Netherlands.
Diabetologia. 2010 Feb;53(2):254-62. doi: 10.1007/s00125-009-1585-3. Epub 2009 Nov 4.
AIMS/HYPOTHESIS: Microalbuminuria is common in type 1 diabetes and is associated with an increased risk of renal and cardiovascular disease. We aimed to develop and validate a clinical prediction rule that estimates the absolute risk of microalbuminuria.
Data from the European Diabetes Prospective Complications Study (n = 1115) were used to develop the prediction rule (development set). Multivariable logistic regression analysis was used to assess the association between potential predictors and progression to microalbuminuria within 7 years. The performance of the prediction rule was assessed with calibration and discrimination (concordance statistic [c-statistic]) measures. The rule was validated in three other diabetes studies (Pittsburgh Epidemiology of Diabetes Complications [EDC] study, Finnish Diabetic Nephropathy [FinnDiane] study and Coronary Artery Calcification in Type 1 Diabetes [CACTI] study).
Of patients in the development set, 13% were microalbuminuric after 7 years. Glycosylated haemoglobin, AER, WHR, BMI and ever smoking were found to be the most important predictors. A high-risk group (n = 87 [8%]) was identified with a risk of progression to microalbuminuria of 32%. Predictions showed reasonable discriminative ability, with c-statistic of 0.71. The rule showed good calibration and discrimination in EDC, FinnDiane and CACTI (c-statistic 0.71, 0.79 and 0.79, respectively).
CONCLUSIONS/INTERPRETATION: We developed and validated a clinical prediction rule that uses relatively easily obtainable patient characteristics to predict microalbuminuria in patients with type 1 diabetes. This rule can help clinicians to decide on more frequent check-ups for patients at high risk of microalbuminuria in order to prevent long-term chronic complications.
目的/假设:微量白蛋白尿在 1 型糖尿病中很常见,与肾脏和心血管疾病的风险增加有关。我们旨在开发和验证一种临床预测规则,该规则估计微量白蛋白尿的绝对风险。
使用欧洲糖尿病前瞻性并发症研究(n=1115)的数据来开发预测规则(开发集)。多变量逻辑回归分析用于评估潜在预测因子与 7 年内进展为微量白蛋白尿之间的关联。使用校准和区分(一致性统计量[c-统计量])措施评估预测规则的性能。该规则在另外三项糖尿病研究(匹兹堡糖尿病并发症流行病学[EDC]研究、芬兰糖尿病肾病[FinnDiane]研究和 1 型糖尿病冠状动脉钙化[CACTI]研究)中进行了验证。
在开发集中,13%的患者在 7 年后出现微量白蛋白尿。糖化血红蛋白、AER、腰臀比、BMI 和吸烟史被认为是最重要的预测因子。确定了一个高危组(n=87[8%]),其进展为微量白蛋白尿的风险为 32%。预测显示出较好的区分能力,c-统计量为 0.71。该规则在 EDC、FinnDiane 和 CACTI 中显示出良好的校准和区分能力(c-统计量分别为 0.71、0.79 和 0.79)。
结论/解释:我们开发和验证了一种临床预测规则,该规则使用相对容易获得的患者特征来预测 1 型糖尿病患者的微量白蛋白尿。该规则可以帮助临床医生决定对高风险微量白蛋白尿患者进行更频繁的检查,以预防长期慢性并发症。