Suppr超能文献

在多元回归中对连续预测变量进行二分法处理:一个糟糕的主意。

Dichotomizing continuous predictors in multiple regression: a bad idea.

作者信息

Royston Patrick, Altman Douglas G, Sauerbrei Willi

机构信息

MRC Clinical Trials Unit, 222 Euston Road, London NW1 2DA, UK.

出版信息

Stat Med. 2006 Jan 15;25(1):127-41. doi: 10.1002/sim.2331.

Abstract

In medical research, continuous variables are often converted into categorical variables by grouping values into two or more categories. We consider in detail issues pertaining to creating just two groups, a common approach in clinical research. We argue that the simplicity achieved is gained at a cost; dichotomization may create rather than avoid problems, notably a considerable loss of power and residual confounding. In addition, the use of a data-derived 'optimal' cutpoint leads to serious bias. We illustrate the impact of dichotomization of continuous predictor variables using as a detailed case study a randomized trial in primary biliary cirrhosis. Dichotomization of continuous data is unnecessary for statistical analysis and in particular should not be applied to explanatory variables in regression models.

摘要

在医学研究中,连续变量常常通过将数值分组为两个或更多类别而转换为分类变量。我们详细考虑与仅创建两个组相关的问题,这是临床研究中的一种常见方法。我们认为,所实现的简单性是以一定代价换来的;二分法可能会产生而非避免问题,尤其是会导致相当大的效能损失和残余混杂。此外,使用数据衍生的“最优”切点会导致严重偏差。我们以原发性胆汁性肝硬化的一项随机试验作为详细案例研究,来说明连续预测变量二分法的影响。连续数据的二分法对于统计分析而言并无必要,尤其不应应用于回归模型中的解释变量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验