Suppr超能文献

利用遥感驱动的陆地生物圈模型估算和分析印度的陆地净初级生产力。

Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model.

机构信息

Indian Institute of Remote Sensing (NRSC), Dehradun, 248001, India.

出版信息

Environ Monit Assess. 2010 Nov;170(1-4):195-213. doi: 10.1007/s10661-009-1226-9. Epub 2009 Nov 12.

Abstract

In the present study, the Carnegie-Ames-Stanford Approach (CASA), a terrestrial biosphere model, has been used to investigate spatiotemporal pattern of net primary productivity (NPP) during 2003 over the Indian subcontinent. The model drivers at 2-min spatial resolution were derived from National Oceanic and Atmospheric Administration advanced very high resolution radiometer normalized difference vegetation index, weather inputs, and soil and land cover maps. The annual NPP was estimated to be 1.57 Pg C (at the rate of 544 g C m(-2)), of which 56% contributed by croplands (with 53% of geographic area of the country (GAC)), 18.5% by broadleaf deciduous forest (15% of GAC), 10% by broadleaf evergreen forest (5% of GAC), and 8% by mixed shrub and grassland (19% of GAC). There is very good agreement between the modeled NPP and ground-based cropland NPP estimates over the western India (R2=0.54; p=0.05). The comparison of CASA-based annual NPP estimates with the similar products from other operational algorithms such as C-fix and Moderate Resolution Imaging Spectroradiometer (MODIS) indicate that high agreement exists between the CASA and MODIS products over all land covers of the country, while agreement between CASA and C-Fix products is relatively low over the region dominated by agriculture and grassland, and the agreement is very low over the forest land. Sensitivity analysis suggest that the difference could be due to inclusion of variable light use efficiency (LUE) across different land cover types and environment stress scalars as downregulator of NPP in the present CASA model study. Sensitivity analysis further shows that the CASA model can overestimate the NPP by 50% of the national budget in absence of downregulators and underestimate the NPP by 27% of the national budget by the use of constant LUE (0.39 gC MJ(-1)) across different vegetation cover types.

摘要

在本研究中,使用卡内基-艾姆斯-斯坦福方法(CASA),一种陆地生物圈模型,来研究 2003 年期间印度次大陆净初级生产力(NPP)的时空模式。模型的驱动因素在 2 分钟的空间分辨率,来自国家海洋和大气管理局先进的非常高分辨率辐射计归一化差异植被指数、天气输入以及土壤和土地覆盖地图。估计的年 NPP 为 1.57Pg C(以 544g C m(-2)的速率),其中 56%由农田贡献(占全国地理区域(GAC)的 53%),18.5%由阔叶落叶林贡献(占 GAC 的 15%),10%由阔叶常绿林贡献(占 GAC 的 5%),8%由混合灌木和草地贡献(占 GAC 的 19%)。在印度西部,模型化的 NPP 与基于地面的农田 NPP 估算之间存在非常好的一致性(R2=0.54;p=0.05)。与其他操作算法(如 C-fix 和中等分辨率成像光谱仪(MODIS))的基于 CASA 的年 NPP 估算的比较表明,CASA 和 MODIS 产品在全国所有土地覆盖类型上都存在高度一致性,而 CASA 和 C-Fix 产品之间的一致性在以农业和草地为主的地区相对较低,在森林地区的一致性非常低。敏感性分析表明,差异可能是由于在本 CASA 模型研究中,包括不同土地覆盖类型和环境胁迫标度的可变光能利用率(LUE)作为 NPP 的下调因子。敏感性分析进一步表明,在没有下调因子的情况下,CASA 模型可能会将全国预算的 NPP 高估 50%,而在使用不同植被覆盖类型的恒定 LUE(0.39gC MJ(-1))的情况下,将全国预算的 NPP 低估 27%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验