Institute of Applied Mathematics and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2.
Mol Biol Cell. 2010 Jan 15;21(2):278-86. doi: 10.1091/mbc.e09-07-0579. Epub 2009 Nov 12.
Microtubules confined to the two-dimensional cortex of elongating plant cells must form a parallel yet dispersed array transverse to the elongation axis for proper cell wall expansion. Some of these microtubules exhibit free minus-ends, leading to migration at the cortex by hybrid treadmilling. Collisions between microtubules can result in plus-end entrainment ("zippering") or rapid depolymerization. Here, we present a computational model of cortical microtubule organization. We find that plus-end entrainment leads to self-organization of microtubules into parallel arrays, whereas catastrophe-inducing collisions do not. Catastrophe-inducing boundaries (e.g., upper and lower cross-walls) can tune the orientation of an ordered array to a direction transverse to elongation. We also find that changes in dynamic instability parameters, such as in mor1-1 mutants, can impede self-organization, in agreement with experimental data. Increased entrainment, as seen in clasp-1 mutants, conserves self-organization, but delays its onset and fails to demonstrate increased ordering. We find that branched nucleation at acute angles off existing microtubules results in distinctive sparse arrays and infer either that microtubule-independent or coparallel nucleation must dominate. Our simulations lead to several testable predictions, including the effects of reduced microtubule severing in katanin mutants.
微管局限于伸长植物细胞的二维皮层,必须形成与伸长轴横向的平行但分散的阵列,以进行适当的细胞壁扩展。其中一些微管表现出游离的 minus-末端,导致通过杂交 treadmilling 在皮层迁移。微管之间的碰撞会导致 plus-末端捕获(“zippering”)或快速解聚。在这里,我们提出了一个皮层微管组织的计算模型。我们发现,plus-末端捕获导致微管自行组织成平行阵列,而诱发崩溃的碰撞则不会。诱发崩溃的边界(例如,上壁和下壁)可以将有序阵列的方向调整为横向伸长的方向。我们还发现,动态不稳定性参数的变化,例如在 mor1-1 突变体中,会阻碍自组织,这与实验数据一致。如在 clasp-1 突变体中所见的增加捕获,会保留自组织,但会延迟其开始并不能证明增加的有序性。我们发现,在现有微管上以锐角分支的成核会导致独特的稀疏阵列,并且推断出必须以微管独立或共平行成核为主导。我们的模拟得出了几个可测试的预测,包括在katanin 突变体中减少微管切断的影响。