Neuroscience Research Institute, State University of New York-College at Old Westbury, USA.
CNS Neurosci Ther. 2010 Jun;16(3):e124-37. doi: 10.1111/j.1755-5949.2009.00114.x. Epub 2009 Nov 13.
Morphine biosynthesis in relatively simple and complex integrated animal systems has been demonstrated. Key enzymes in the biosynthetic pathway have also been identified, that is, CYP2D6 and COMT. Endogenous morphine appears to exert highly selective actions via novel mu opiate receptor subtypes, that is, mu3,-4, which are coupled to constitutive nitric oxide release, exerting general yet specific down regulatory actions in various animal tissues. The pivotal role of dopamine as a chemical intermediate in the morphine biosynthetic pathway in plants establishes a functional basis for its expansion into an essential role as the progenitor catecholamine signaling molecule underlying neural and neuroendocrine transmission across diverse animal phyla. In invertebrate neural systems, dopamine serves as the preeminent catecholamine signaling molecule, with the emergence and limited utilization of norepinephrine in newly defined adaptational chemical circuits required by a rapidly expanding set of physiological demands, that is, motor and motivational networks. In vertebrates epinephrine, emerges as the major end of the catecholamine synthetic pathway consistent with a newly incorporated regulatory modification. Given the striking similarities between the enzymatic steps in the morphine biosynthetic pathway and those driving the evolutionary adaptation of catecholamine chemical species to accommodate an expansion of interactive but distinct signaling systems, it is our overall contention that the evolutionary emergence of catecholamine systems required conservation and selective "retrofit" of specific enzyme activities, that is, COMT, drawn from cellular morphine expression. Our compelling hypothesis promises to initiate the reexamination of clinical studies, adding new information and treatment modalities in biomedicine.
已经证明,相对简单和复杂的综合动物系统中存在吗啡生物合成。生物合成途径中的关键酶也已被确定,即 CYP2D6 和 COMT。内源性吗啡似乎通过新型 mu 阿片受体亚型发挥高度选择性作用,即 mu3、mu4,它们与组成型一氧化氮释放偶联,在各种动物组织中发挥一般但特定的下调调节作用。多巴胺作为植物中吗啡生物合成途径中的化学中间产物的关键作用,为其扩展为神经和神经内分泌传递的基本前体儿茶酚胺信号分子奠定了功能基础,跨越不同的动物门。在无脊椎动物神经系统中,多巴胺作为主要的儿茶酚胺信号分子,在新定义的适应性化学电路中需要有限利用去甲肾上腺素,以满足快速扩展的一系列生理需求,即运动和动机网络。在脊椎动物中,肾上腺素作为儿茶酚胺合成途径的主要末端出现,这与新纳入的调节修饰一致。鉴于吗啡生物合成途径中的酶步骤与驱动儿茶酚胺化学物质进化适应以适应相互但不同的信号系统扩展的步骤之间存在惊人的相似性,我们的总体观点是,儿茶酚胺系统的进化出现需要保守和选择性的“改造”特定的酶活性,即 COMT,来自细胞吗啡表达。我们引人注目的假设有望启动对临床研究的重新审查,为生物医学增加新的信息和治疗模式。