The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
Biomaterials. 2010 Mar;31(7):1944-54. doi: 10.1016/j.biomaterials.2009.10.060. Epub 2009 Nov 14.
Engineering extracellular matrices that utilize the body's natural healing capacity enable the progression of regenerative therapies. Fibrin, widely used as a surgical sealant, is one such matrix that may be augmented by the addition of protein factors to promote cell infiltration and differentiation. The thrombin-catalyzed conversion of fibrinogen to fibrin exposes N-terminal fibrin knobs that bind to C-terminal pockets to form the fibrin network. Here, we have created a platform system for the production of therapeutic proteins that capitalize on these native knob:pocket interactions for protein delivery within fibrin matrices. This system enables the retention of therapeutic proteins within fibrin without additional enzymatic or synthetic crosslinking factors. Using an integrin-binding fibronectin fragment as a model protein, we demonstrate that engineered knob-protein fusions bind consistently and specifically to fibrin(ogen). Equilibrium dissociation constants (K(D)) obtained using surface plasmon resonance indicate that these fusions have mum binding affinities, comparable to the native knob-containing fibrin fragments. The specificity of these interactions was verified by ELISA in the presence of molar excess of competing knob mimics. Release profiles and real-time confocal imaging demonstrate that the fusions were retained within fibrin matrices, even under the stringent continuous perfusion conditions used in the latter. In summary, this work explores the benefits and limitations of engaging native, biologically-inspired, non-covalent knob:pocket interactions within fibrin(ogen) for the retention of therapeutic proteins in fibrin matrices and provides insight into the stability of native knob:pocket interactions within fibrin networks.
利用人体自然愈合能力的工程细胞外基质使再生疗法得以发展。纤维蛋白作为一种常用的手术密封剂,是一种可以通过添加蛋白质因子来促进细胞渗透和分化的基质。凝血酶催化纤维蛋白原转化为纤维蛋白,暴露出 N 端纤维蛋白结,这些结与 C 端口袋结合形成纤维蛋白网络。在这里,我们创建了一个生产治疗性蛋白的平台系统,该系统利用这些天然的结:口袋相互作用,在纤维蛋白基质内进行蛋白递药。该系统能够在不使用额外的酶或合成交联因子的情况下,将治疗性蛋白保留在纤维蛋白内。我们使用整合素结合型纤维连接蛋白片段作为模型蛋白,证明了工程化的结-蛋白融合物能够一致且特异性地结合纤维蛋白原。表面等离子体共振(SPR)获得的平衡解离常数(K(D))表明,这些融合物具有最大的结合亲和力,与含有天然结的纤维蛋白片段相当。这些相互作用的特异性通过存在摩尔过量竞争结模拟物的 ELISA 进行了验证。释放曲线和实时共焦成像表明,融合蛋白即使在用于后者的严格连续灌注条件下,也能保留在纤维蛋白基质内。总之,这项工作探索了在纤维蛋白原(ogen)中利用天然的、受生物启发的、非共价的结:口袋相互作用来保留治疗性蛋白在纤维蛋白基质中的益处和局限性,并深入了解了天然结:口袋相互作用在纤维蛋白网络中的稳定性。