Suppr超能文献

结核分枝杆菌 2C-甲基-D-赤藓醇-4-磷酸胞苷转移酶的同源建模,该酶是异戊烯基生物合成 MEP 途径中的第三个酶。

Homology modeling of Mycobacterium tuberculosis 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase, the third enzyme in the MEP pathway for isoprenoid biosynthesis.

机构信息

Dept. de Química Física, Universitat de Barcelona, Intitut de Recerca en Química Teòrica i Computacional (IQTCUB), Martí i Franquès 1, 08028, Barcelona, Spain.

出版信息

J Mol Model. 2010 Jun;16(6):1061-73. doi: 10.1007/s00894-009-0615-x. Epub 2009 Nov 15.

Abstract

Tuberculosis is one of the leading infectious diseases in humans. Discovering new treatments for this disease is urgently required, especially in view of the emergence of multiple drug resistant organisms and to reduce the total duration of current treatments. The synthesis of isoprenoids in Mycobacterium tuberculosis has been reported as an interesting pathway to target, and particular attention has been focused on the methylerythritol phosphate (MEP) pathway comprising the early steps of isoprenoid biosynthesis. In this context we have studied the enzyme 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase (CMS), the third enzyme in the MEP pathway, since the lack of a resolved structure of this protein in M. tuberculosis has seriously limited its use as a drug target. We performed homology modeling of M. tuberculosis CMS in order to provide a reliable model for use in structure-based drug design. After evaluating the quality of the model, we performed a thorough study of the catalytic site and the dimerization interface of the model, which suggested the most important sites (conserved and non-conserved) that could be useful for drug discovery and mutagenesis studies. We found that the metal coordination of CDP-methylerythritol in M. tuberculosis CMS differs substantially with respect to the Escherichia coli variant, consistent with the fact that the former is able to utilize several metal ions for catalysis. Moreover, we propose that electrostatic interactions could explain the higher affinity of the MEP substrate compared with the cytosine 5'-triphosphate substrate in the M. tuberculosis enzyme as reported previously.

摘要

结核病是人类主要传染病之一。鉴于多种耐药生物的出现以及为了缩短当前治疗的总时长,急需研发治疗结核病的新方法。分枝杆菌异戊烯醇磷酸(MEP)途径的合成被认为是一个很有前途的靶点,特别是其中异戊烯基生物合成的早期步骤。在这种情况下,我们研究了酶 2C-甲基-D-赤藓醇-4-磷酸胞苷转移酶(CMS),这是 MEP 途径的第三个酶,因为缺乏结核分枝杆菌 CMS 的明确结构,这严重限制了它作为药物靶点的应用。我们对结核分枝杆菌 CMS 进行了同源建模,以提供一种可靠的结构基础药物设计模型。在评估模型质量后,我们对模型的催化位点和二聚化界面进行了深入研究,结果提示了一些对药物发现和突变研究可能有用的重要(保守和非保守)位点。我们发现结核分枝杆菌 CMS 中 CDP-甲基赤藓醇的金属配位与大肠杆菌变体有很大的不同,这与前者能够利用多种金属离子进行催化的事实相符。此外,我们提出静电相互作用可以解释之前报道的 MEP 底物比胞嘧啶 5'-三磷酸底物与 M. tuberculosis 酶的亲和力更高的原因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验