Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany.
Anal Chem. 2009 Dec 15;81(24):10193-200. doi: 10.1021/ac902069x.
This work investigates the impact of conduit geometry on the chromatographic performance of typical particulate microchip packings. For this purpose, high-performance liquid chromatography (HPLC)/UV-microchips with separation channels of quadratic, trapezoidal, or Gaussian cross section were fabricated by direct laser ablation and lamination of multiple polyimide layers and then slurry-packed with either 3 or 5 microm spherical porous C8-silica particles under optimized packing conditions. Experimentally determined plate height curves for the empty microchannels are compared with dispersion coefficients from theoretical calculations. Packing densities and plate height curves for the various microchip packings are presented and conclusively explained. The 3 microm packings display a high packing density irrespective of their conduit geometries, and their performance reflects the dispersion behavior of the empty channels. Dispersion in 5 microm packings correlates with the achieved packing densities, which are limited by the number and accessibility of corners in a given conduit shape.
本工作研究了管道几何形状对典型颗粒微芯片填料色谱性能的影响。为此,通过直接激光烧蚀和多层聚酰亚胺层的层压,制造了具有方形、梯形或高斯横截面分离通道的高效液相色谱(HPLC)/UV 微芯片,然后在优化的填充条件下,用 3 或 5 微米球形多孔 C8-硅胶颗粒进行浆体填充。将空微通道的实验确定的板高曲线与理论计算的分散系数进行了比较。给出了各种微芯片填料的填充密度和板高曲线,并进行了结论性解释。3 微米的填料无论其管道几何形状如何,都具有较高的填充密度,其性能反映了空通道的分散行为。5 微米填料的分散与所达到的填充密度相关,填充密度受到给定管道形状中拐角数量和可及性的限制。